-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstreamlit_app.py
145 lines (106 loc) · 4.7 KB
/
streamlit_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
## -------------------------------
## ==== Import smthng ====
## -------------------------------
##Libraries for Streamlit
##--------------------------------
import streamlit as st
# st.title('Uber pickups in NYC')
from PIL import Image
import io
import os
from scipy.io import wavfile as scipy_wav
##Libraries for prediction
##--------------------------------
import numpy as np
import matplotlib.pyplot as plt
import auditok
# import tensorflow as tf
# from tensorflow.keras import models
## Page decorations
##--------------------------------
id_logo = Image.open("TypoMeshDarkFullat3x.png")
col1, col2, col3 = st.columns([1, 3, 1])
with col2:
st.image(id_logo)
st.markdown("<h1 style='text-align: center; color: grey;'>AI Audio Recognition App</h1>",
unsafe_allow_html=True)
st.markdown("<h1 style='text-align: center; color: black;'>Fence Cutting Detector</h1>",
unsafe_allow_html=True)
# st.markdown("<h3 style='text-align: center; color: black;'>Canvas Cutting Detection</h3>",
# unsafe_allow_html=True)
st.header(" ")
st.header(" ")
# # st.snow()
# snow_state = 0
# if snow_state == 0:
# st.snow()
# snow_state = 1
## -------------------------------
## ==== Select and load data ====
## -------------------------------
# st.header("Select data to analyze")
st.markdown("<h2 style='text-align: center; color: grey;'>Select data to analyze</h2>",
unsafe_allow_html=True)
st.subheader("Select one of the samples")
##---------------------------------------
selected_provided_file2 = st.selectbox(label="", options=os.listdir("./samples2try/"))
audio_file_name = "./samples2try/" + selected_provided_file2
st.subheader("or Upload an audio file in WAV format")
##---------------------------------------------------
st.write("if a file is uploaded, previously selected samples are not taken into account")
uploaded_audio_file = st.file_uploader(label="Select a single-channels WAV file",
type="wav",
accept_multiple_files=False,
key=None,
help=None,
on_change=None,
args=None,
kwargs=None,
disabled=False)
##Data reading
##----------------------------
if uploaded_audio_file is not None:
bytes_data = uploaded_audio_file.read()
region = auditok.load(bytes_data, sampling_rate=48000, sample_width=2, channels=1, skip=0.001)
else:
region = auditok.load(audio_file_name)
st.subheader("Play the audio")
##----------------------------
# st.audio(region.samples, sample_rate=region.sampling_rate)
audio_sampling_rate = region.sampling_rate
audio_data = region.samples
audio_data = (audio_data - np.mean(audio_data)) / np.std(audio_data)
virtualfile = io.BytesIO()
scipy_wav.write(virtualfile, rate=audio_sampling_rate, data=audio_data)
uploaded_audio_file = virtualfile
st.audio(uploaded_audio_file, format='audio/wav')
st.subheader("Plot the detected events")
##--------------------------------------
audio_regions = region.split_and_plot(
min_dur=0.01, # minimum duration of a valid audio event in seconds
max_dur=0.5, # maximum duration of an event
max_silence=0.2, # maximum duration of tolerated continuous silence within an event
energy_threshold=55, # 55 # threshold of detection
save_as='auditok_fig.png',
show=False,
)
auditok_fig_reggions = Image.open("auditok_fig.png")
st.image(auditok_fig_reggions)
events_per_second = len(audio_regions) / region.duration
st.subheader("Number of detected Events:")
##----------------------------------------
st.markdown(f"### _{len(audio_regions)}_")
# st.subheader("Rate of Events per second:")
# st.markdown(f"### _{events_per_second}_")
st.subheader("Select Threshoold for Alarm:")
##----------------------------------------
st.write("If the number of detected events is more of equal to the Threshoold within 10sec, the alarm is triggered.")
# alarm_threshold = st.slider('Select the Threshoold level', 0, 10, 3)
alarm_threshold = st.slider('', 0, 10, 3)
# st.write('Values:', alarm_threshold)
if len(audio_regions) >= alarm_threshold:
st.error('===> Alarm is triggered. <===', icon="🚨")
elif len(audio_regions) >= 1:
st.info('An Event is detected, but the Threshoold is not reached.', icon="ℹ️")
else:
st.success('Nothing is detected, keep calm, relax.', icon="✅")