forked from foamliu/Deep-Image-Matting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
109 lines (86 loc) · 3.67 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import multiprocessing
import cv2 as cv
import keras.backend as K
import numpy as np
from tensorflow.python.client import device_lib
from config import epsilon, epsilon_sqr
from config import img_cols
from config import img_rows
from config import unknown_code
# overall loss: weighted summation of the two individual losses.
#
def overall_loss(y_true, y_pred):
w_l = 0.5
return w_l * alpha_prediction_loss(y_true, y_pred) + (1 - w_l) * compositional_loss(y_true, y_pred)
# alpha prediction loss: the abosolute difference between the ground truth alpha values and the
# predicted alpha values at each pixel. However, due to the non-differentiable property of
# absolute values, we use the following loss function to approximate it.
def alpha_prediction_loss(y_true, y_pred):
mask = y_true[:, :, :, 1]
diff = y_pred[:, :, :, 0] - y_true[:, :, :, 0]
diff = diff * mask
num_pixels = K.sum(mask)
return K.sum(K.sqrt(K.square(diff) + epsilon_sqr)) / (num_pixels + epsilon)
# compositional loss: the aboslute difference between the ground truth RGB colors and the predicted
# RGB colors composited by the ground truth foreground, the ground truth background and the predicted
# alpha mattes.
def compositional_loss(y_true, y_pred):
mask = y_true[:, :, :, 1]
mask = K.reshape(mask, (-1, img_rows, img_cols, 1))
image = y_true[:, :, :, 2:5]
fg = y_true[:, :, :, 5:8]
bg = y_true[:, :, :, 8:11]
c_g = image
c_p = y_pred * fg + (1.0 - y_pred) * bg
diff = c_p - c_g
diff = diff * mask
num_pixels = K.sum(mask)
return K.sum(K.sqrt(K.square(diff) + epsilon_sqr)) / (num_pixels + epsilon)
# compute the MSE error given a prediction, a ground truth and a trimap.
# pred: the predicted alpha matte
# target: the ground truth alpha matte
# trimap: the given trimap
#
def compute_mse_loss(pred, target, trimap):
error_map = (pred - target) / 255.
mask = np.equal(trimap, unknown_code).astype(np.float32)
# print('unknown: ' + str(unknown))
loss = np.sum(np.square(error_map) * mask) / np.sum(mask)
# print('mse_loss: ' + str(loss))
return loss
# compute the SAD error given a prediction, a ground truth and a trimap.
#
def compute_sad_loss(pred, target, trimap):
error_map = np.abs(pred - target) / 255.
mask = np.equal(trimap, unknown_code).astype(np.float32)
loss = np.sum(error_map * mask)
# the loss is scaled by 1000 due to the large images used in our experiment.
loss = loss / 1000
# print('sad_loss: ' + str(loss))
return loss
# getting the number of GPUs
def get_available_gpus():
local_device_protos = device_lib.list_local_devices()
return [x.name for x in local_device_protos if x.device_type == 'GPU']
# getting the number of CPUs
def get_available_cpus():
return multiprocessing.cpu_count()
def get_final_output(out, trimap):
mask = np.equal(trimap, unknown_code).astype(np.float32)
return (1 - mask) * trimap + mask * out
def safe_crop(mat, x, y, crop_size=(img_rows, img_cols)):
crop_height, crop_width = crop_size
if len(mat.shape) == 2:
ret = np.zeros((crop_height, crop_width), np.float32)
else:
ret = np.zeros((crop_height, crop_width, 3), np.float32)
crop = mat[y:y + crop_height, x:x + crop_width]
h, w = crop.shape[:2]
ret[0:h, 0:w] = crop
if crop_size != (img_rows, img_cols):
ret = cv.resize(ret, dsize=(img_rows, img_cols), interpolation=cv.INTER_NEAREST)
return ret
def draw_str(dst, target, s):
x, y = target
cv.putText(dst, s, (x + 1, y + 1), cv.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 0), thickness=2, lineType=cv.LINE_AA)
cv.putText(dst, s, (x, y), cv.FONT_HERSHEY_PLAIN, 1.0, (255, 255, 255), lineType=cv.LINE_AA)