-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy patheval-adv.py
207 lines (157 loc) · 7.31 KB
/
eval-adv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
"""
Adversarial Evaluation with PGD+, CW (Margin) PGD and black box adversary.
"""
import json
import time
import argparse
import shutil
import os
import numpy as np
import pandas as pd
from tqdm import tqdm as tqdm
import torch
import torch.nn as nn
from core.attacks import create_attack
from core.attacks import CWLoss
from core.data import get_data_info
from core.data import load_data
from core.models import create_model
from core.utils import ctx_noparamgrad_and_eval
from core.utils import Logger
from core.utils import parser_eval
from core.utils import seed
from core.utils import Trainer
# Setup
parse = parser_eval()
args = parse.parse_args()
LOG_DIR = args.log_dir + args.desc
with open(LOG_DIR+'/args.txt', 'r') as f:
old = json.load(f)
args.__dict__ = dict(vars(args), **old)
DATA_DIR = args.data_dir + args.data + '/'
LOG_DIR = args.log_dir + args.desc
WEIGHTS = LOG_DIR + '/weights-best.pt'
logger = Logger(LOG_DIR+'/log-adv.log')
info = get_data_info(DATA_DIR)
BATCH_SIZE = args.batch_size
BATCH_SIZE_VALIDATION = args.batch_size_validation
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logger.log('Using device: {}'.format(device))
# Load data
seed(args.seed)
_, _, _, test_dataloader = load_data(DATA_DIR, BATCH_SIZE, BATCH_SIZE_VALIDATION, use_augmentation=False,
shuffle_train=False)
# Helper function
def eval_multiple_restarts(attack, model, dataloader, num_restarts=5, verbose=True):
"""
Evaluate adversarial accuracy with multiple restarts.
"""
model.eval()
N = len(dataloader.dataset)
is_correct = torch.ones(N).bool().to(device)
for i in tqdm(range(0, num_restarts), disable=not verbose):
iter_is_correct = []
for x, y in tqdm(dataloader):
x, y = x.to(device), y.to(device)
with ctx_noparamgrad_and_eval(model):
x_adv, _ = attack.perturb(x, y)
out = model(x_adv)
iter_is_correct.extend(torch.softmax(out, dim=1).argmax(dim=1) == y)
is_correct = torch.logical_and(is_correct, torch.BoolTensor(iter_is_correct).to(device))
adv_acc = (is_correct.sum().float()/N).item()
return adv_acc
def eval_multiple_restarts_advertorch(attack, model, dataloader, num_restarts=1, verbose=True):
"""
Evaluate adversarial accuracy with multiple restarts (Advertorch).
"""
model.eval()
N = len(dataloader.dataset)
is_correct = torch.ones(N).bool().to(device)
for i in tqdm(range(0, num_restarts), disable=not verbose):
iter_is_correct = []
for x, y in tqdm(dataloader):
x, y = x.to(device), y.to(device)
with ctx_noparamgrad_and_eval(model):
x_adv = attack.perturb(x, y)
out = model(x_adv)
iter_is_correct.extend(torch.softmax(out, dim=1).argmax(dim=1) == y)
is_correct = torch.logical_and(is_correct, torch.BoolTensor(iter_is_correct).to(device))
adv_acc = (is_correct.sum().float()/N).item()
return adv_acc
# PGD Evaluation
seed(args.seed)
trainer = Trainer(info, args)
if 'tau' in args and args.tau:
print ('Using WA model.')
trainer.load_model(WEIGHTS)
trainer.model.eval()
test_acc = trainer.eval(test_dataloader)
logger.log('\nStandard Accuracy-\tTest: {:.2f}%.'.format(test_acc*100))
if args.wb:
# CW-PGD-40 Evaluation
seed(args.seed)
num_restarts = 1
if args.attack in ['linf-pgd', 'linf-df', 'fgsm']:
args.attack_iter, args.attack_step = 40, 0.01
else:
args.attack_iter, args.attack_step = 40, 30/255.0
assert args.attack in ['linf-pgd', 'l2-pgd'], 'CW evaluation only supported for attack=linf-pgd or attack=l2-pgd !'
attack = create_attack(trainer.model, CWLoss, args.attack, args.attack_eps, args.attack_iter, args.attack_step)
logger.log('\n==== CW-PGD Evaluation. ====')
logger.log('Attack: cw-{}.'.format(args.attack))
logger.log('Attack Parameters: Step size: {:.3f}, Epsilon: {:.3f}, #Iterations: {}.'.format(args.attack_step,
args.attack_eps,
args.attack_iter))
test_adv_acc1 = eval_multiple_restarts(attack, trainer.model, test_dataloader, num_restarts, verbose=False)
logger.log('Adversarial Accuracy-\tTest: {:.2f}%.'.format(test_adv_acc1*100))
# PGD-40 (with 5 restarts) Evaluation
seed(args.seed)
num_restarts = 5
if args.attack in ['linf-pgd', 'linf-df', 'fgsm']:
args.attack_iter, args.attack_step = 40, 0.01
else:
args.attack_iter, args.attack_step = 40, 30/255.0
attack = create_attack(trainer.model, trainer.criterion, args.attack, args.attack_eps, args.attack_iter, args.attack_step)
logger.log('\n==== PGD+ Evaluation. ====')
logger.log('Attack: {} with {} restarts.'.format(args.attack, num_restarts))
logger.log('Attack Parameters: Step size: {:.3f}, Epsilon: {:.3f}, #Iterations: {}.'.format(args.attack_step,
args.attack_eps,
args.attack_iter))
test_adv_acc2 = eval_multiple_restarts(attack, trainer.model, test_dataloader, num_restarts, verbose=True)
logger.log('Adversarial Accuracy-\tTest: {:.2f}%.'.format(test_adv_acc2*100))
# Black Box Evaluation
class dotdict(dict):
def __getattr__(self, name):
return self[name]
if args.source != None:
seed(args.seed)
assert args.attack in ['linf-pgd', 'l2-pgd'], 'Black-box evaluation only supported for attack=linf-pgd or attack=l2-pgd!'
if args.attack in ['linf-pgd', 'linf-df', 'fgsm']:
args.attack_iter, args.attack_step = 40, 0.01
else:
args.attack_iter, args.attack_step = 40, 30/255.0
SRC_LOG_DIR = args.log_dir + args.source
with open(SRC_LOG_DIR+'/args.txt', 'r') as f:
src_args = json.load(f)
src_args = dotdict(src_args)
src_model = create_model(src_args.model, src_args.normalize, info, device)
src_model.load_state_dict(torch.load(SRC_LOG_DIR + '/weights-best.pt')['model_state_dict'])
src_model.eval()
src_attack = create_attack(src_model, trainer.criterion, args.attack, args.attack_eps, args.attack_iter, args.attack_step)
adv_acc = 0.0
for x, y in test_dataloader:
x, y = x.to(device), y.to(device)
with ctx_noparamgrad_and_eval(src_model):
x_adv, _ = src_attack.perturb(x, y)
out = trainer.model(x_adv)
adv_acc += accuracy(y, out)
adv_acc /= len(test_dataloader)
logger.log('\n==== Black-box Evaluation. ====')
logger.log('Source Model: {}.'.format(args.source))
logger.log('Attack: {}.'.format(args.attack))
logger.log('Attack Parameters: Step size: {:.3f}, Epsilon: {:.3f}, #Iterations: {}.'.format(args.attack_step,
args.attack_eps,
args.attack_iter))
logger.log('Black-box Adv. Accuracy-\tTest: {:.2f}%.'.format(adv_acc*100))
del src_attack, src_model
logger.log('Script Completed.')