-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
87 lines (64 loc) · 3.26 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import base64
from src.models import MultimodalModel, ImageModel, TextModel
import src.utils as ut
import torch
from gensim.models import Word2Vec
from PIL import Image
from flask import Flask, request
from flask_cors import CORS
import json
from io import BytesIO
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
word2vec = Word2Vec.load("./data/models/WORD2VEC.model")
# text_model = TextModel(3).to(DEVICE)
# text_model.load_state_dict(torch.load("data/models/RETRAINED_TEXT_MODEL.pt"))
# multimodal_model = MultimodalModel(TextModel(3, True).to(DEVICE), ImageModel(3, 224, True), 3).to(DEVICE)
# multimodal_model.load_state_dict(torch.load("data/models/MULTIMODAL_MODEL.pt"))
# print("Text model prediction")
# prediction = ut.predict(model=text_model, device=DEVICE, text="", word2vec_model=word2vec, image=None, IMG_SHAPE=None)
# print(prediction)
image = Image.open('c:/Users/MourtadaHouari/Downloads/image.jpg').convert("RGB")
image_model = ImageModel(3, 48).to(DEVICE)
image_model.load_state_dict(torch.load("data/models/IMAGES_MODEL.pt"))
print("Image model prediction")
prediction = ut.predict(model=image_model, device=DEVICE, text=None, word2vec_model=None, image=image, IMG_SHAPE=48)
print(prediction)
# print("Multimodal model prediction")
# prediction = ut.predict(model=multimodal_model, device=DEVICE, text="", word2vec_model=word2vec, image=image, IMG_SHAPE=224)
# print(prediction)
# app = Flask(__name__)
# @app.route("/text", methods=['POST'])
# def text_analysis():
# json_data = request.data.decode('utf-8')
# data = json.loads(json_data)
# text = data.get('text')
# prediction = ut.predict(model=text_model, device=DEVICE, text=text, word2vec_model=word2vec, image=None, IMG_SHAPE=None)
# prediction = prediction[0][0].cpu().numpy()
# value = {'negative': str(prediction[0]), 'neutral': str(prediction[1]), 'positive': str(prediction[2])}
# return {'response': value}
# @app.route("/image", methods=['POST'])
# def image_analysis():
# json_data = request.data.decode('utf-8')
# data = json.loads(json_data)
# image = data.get('image')
# decoded_file = base64.b64decode(image)
# image = Image.open(BytesIO(decoded_file)).convert('RGB')
# prediction = ut.predict(model=image_model, device=DEVICE, text=None, word2vec_model=None, image=image, IMG_SHAPE=48)
# prediction = prediction[0][0].cpu().numpy()
# value = {'negative': str(prediction[0]), 'neutral': str(prediction[1]), 'positive': str(prediction[2])}
# return {'response': value}
# @app.route("/multimodal", methods=['POST'])
# def multimodal_analysis():
# json_data = request.data.decode('utf-8')
# data = json.loads(json_data)
# image = data.get('image')
# decoded_file = base64.b64decode(image)
# image = Image.open(BytesIO(decoded_file)).convert('RGB')
# text = data.get('text')
# prediction = ut.predict(model=multimodal_model, device=DEVICE, text=text, word2vec_model=word2vec, image=image, IMG_SHAPE=224)
# prediction = prediction[0].cpu().numpy()
# value = {'negative': str(prediction[0]), 'neutral': str(prediction[1]), 'positive': str(prediction[2])}
# return {'response': value}
# if __name__ == "__main__": # There is an error on this line
# app.run(host='127.0.0.1')
# print("test")