-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpretrain.py
52 lines (44 loc) · 1.62 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from pytorch_lightning import Trainer, seed_everything
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint, RichModelSummary, RichProgressBar
from pytorch_lightning.loggers import TensorBoardLogger
from rindti.data import PreTrainDataModule
from rindti.models import BGRLModel, DistanceModel, GraphLogModel, InfoGraphModel, ProtClassModel
from rindti.utils import read_config
models = {
"graphlog": GraphLogModel,
"infograph": InfoGraphModel,
"class": ProtClassModel,
"bgrl": BGRLModel,
"distance": DistanceModel,
}
def pretrain(**kwargs):
"""Run pretraining pipeline"""
seed_everything(kwargs["seed"])
dm = PreTrainDataModule(**kwargs["datamodule"])
dm.setup()
dm.update_config(kwargs)
logger = TensorBoardLogger("tb_logs", name="prot_test", default_hp_metric=False)
callbacks = [
ModelCheckpoint(monitor="val_loss", save_top_k=3, mode="min"),
EarlyStopping(monitor="val_loss", mode="min", **kwargs["early_stop"]),
RichModelSummary(),
RichProgressBar(),
]
trainer = Trainer(
callbacks=callbacks,
logger=logger,
num_sanity_val_steps=0,
deterministic=False,
**kwargs["trainer"],
)
model = models[kwargs["model"]["module"]](**kwargs)
trainer.fit(model, dm)
if __name__ == "__main__":
from argparse import ArgumentParser
from pprint import pprint
parser = ArgumentParser(prog="Model Trainer")
parser.add_argument("config", type=str, help="Path to YAML config file")
args = parser.parse_args()
config = read_config(args.config)
pprint(config)
pretrain(**config)