-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathchar-rnn.jl
59 lines (46 loc) · 1.25 KB
/
char-rnn.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
using Flux
using Flux: onehot, chunk, batchseq, throttle, crossentropy
using StatsBase: wsample
using Base.Iterators: partition
cd(@__DIR__)
# isfile("input.txt") ||
# download("https://cs.stanford.edu/people/karpathy/char-rnn/shakespeare_input.txt",
# "input.txt")
text = collect(String(read("input.txt")))
alphabet = [unique(text)..., '_']
text = map(ch -> onehot(ch, alphabet), text)
stop = onehot('_', alphabet)
N = length(alphabet)
seqlen = 50
nbatch = 50
Xs = collect(partition(batchseq(chunk(text, nbatch), stop), seqlen))
Ys = collect(partition(batchseq(chunk(text[2:end], nbatch), stop), seqlen))
m = Chain(
LSTM(N, 128),
LSTM(128, 128),
Dense(128, N),
softmax)
m = gpu(m)
function loss(xs, ys)
l = sum(crossentropy.(m.(gpu.(xs)), gpu.(ys)))
Flux.truncate!(m)
return l
end
opt = ADAM(params(m), 0.01)
tx, ty = (gpu.(Xs[5]), gpu.(Ys[5]))
evalcb = () -> @show loss(tx, ty)
Flux.train!(loss, zip(Xs, Ys), opt,
cb = throttle(evalcb, 30))
# Sampling
m = cpu(m)
function sample(m, alphabet, len; temp = 1)
Flux.reset!(m)
buf = IOBuffer()
c = rand(alphabet)
for i = 1:len
write(buf, c)
c = wsample(alphabet, m(onehot(c, alphabet)).data)
end
return String(take!(buf))
end
sample(m, alphabet, 1000) |> println