Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Bug: K cache without FA #103

Closed
Nexesenex opened this issue Oct 23, 2024 · 10 comments · Fixed by #105
Closed

Bug: K cache without FA #103

Nexesenex opened this issue Oct 23, 2024 · 10 comments · Fixed by #105
Labels
bug Something isn't working mainline bug

Comments

@Nexesenex
Copy link
Contributor

What happened?

With the non-FA Quantum K cache, q6_0 works.

But q4_0, q4_1, q5_0, q5_1, q8_0 do not work anymore as K quant without FA, both on IK_L and mainline, and go NaN instead. As does iq4_nl K/no FA.

(I personally don't mind, K q6_0 is my new bff K cache quant).

Tested on Llama 3.1 8b Q5_K.

Name and Version

b3962 on Mainline.
Pre granite merge on IK.

What operating system are you seeing the problem on?

Windows

Relevant log output

Q:\LLAMA_IK>llama-perplexity -m D:\text-generation-webui\models\Meta_Llama_3.1_8b_it-f16-iMat-Q5_K_S_q4_v6.gguf -f wiki.test.raw --parallel 1 -ngl 150 -b 1024 -ts 40,0 --no-mmap -ctk iq4_nl -c 512 --chunks 211
main: build = 3475 (ac156500)
main: built with MSVC 19.38.33141.0 for
main: seed  = 1729657101
llama_model_loader: loaded meta data with 31 key-value pairs and 292 tensors from D:\text-generation-webui\models\Meta_Llama_3.1_8b_it-f16-iMat-Q5_K_S_q4_v6.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Meta_Llama_3.1_8b_it
llama_model_loader: - kv   3:                         general.size_label str              = 8.0B
llama_model_loader: - kv   4:                            general.license str              = llama3.1
llama_model_loader: - kv   5:                               general.tags arr[str,6]       = ["facebook", "meta", "pytorch", "llam...
llama_model_loader: - kv   6:                          general.languages arr[str,8]       = ["en", "de", "fr", "it", "pt", "hi", ...
llama_model_loader: - kv   7:                          llama.block_count u32              = 32
llama_model_loader: - kv   8:                       llama.context_length u32              = 131072
llama_model_loader: - kv   9:                     llama.embedding_length u32              = 4096
llama_model_loader: - kv  10:                  llama.feed_forward_length u32              = 14336
llama_model_loader: - kv  11:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv  12:              llama.attention.head_count_kv u32              = 8
llama_model_loader: - kv  13:                       llama.rope.freq_base f32              = 500000.000000
llama_model_loader: - kv  14:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  15:                          general.file_type u32              = 16
llama_model_loader: - kv  16:                           llama.vocab_size u32              = 128256
llama_model_loader: - kv  17:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv  18:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  19:                         tokenizer.ggml.pre str              = llama-bpe
llama_model_loader: - kv  20:                      tokenizer.ggml.tokens arr[str,128256]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  21:                  tokenizer.ggml.token_type arr[i32,128256]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  22:                      tokenizer.ggml.merges arr[str,280147]  = ["─á ─á", "─á ─á─á─á", "─á─á ─á─á", "...
llama_model_loader: - kv  23:                tokenizer.ggml.bos_token_id u32              = 128000
llama_model_loader: - kv  24:                tokenizer.ggml.eos_token_id u32              = 128009
llama_model_loader: - kv  25:                    tokenizer.chat_template str              = {{- bos_token }}\n{%- if custom_tools ...
llama_model_loader: - kv  26:               general.quantization_version u32              = 2
llama_model_loader: - kv  27:                      quantize.imatrix.file str              = Q:\iMatrix\Meta_Llama_3.1_8b_it-f16.i...
llama_model_loader: - kv  28:                   quantize.imatrix.dataset str              = groups_merged-enhancedV3_FR_SRB_HR.txt
llama_model_loader: - kv  29:             quantize.imatrix.entries_count i32              = 224
llama_model_loader: - kv  30:              quantize.imatrix.chunks_count i32              = 145
llama_model_loader: - type  f32:   66 tensors
llama_model_loader: - type q4_K:   32 tensors
llama_model_loader: - type q5_K:  161 tensors
llama_model_loader: - type q6_K:   33 tensors
llm_load_vocab: special tokens cache size = 256
llm_load_vocab: token to piece cache size = 0.7999 MB
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = BPE
llm_load_print_meta: n_vocab          = 128256
llm_load_print_meta: n_merges         = 280147
llm_load_print_meta: vocab_only       = 0
llm_load_print_meta: n_ctx_train      = 131072
llm_load_print_meta: n_embd           = 4096
llm_load_print_meta: n_layer          = 32
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 8
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_swa            = 0
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 4
llm_load_print_meta: n_embd_k_gqa     = 1024
llm_load_print_meta: n_embd_v_gqa     = 1024
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 14336
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 500000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn  = 131072
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: model type       = 8B
llm_load_print_meta: model ftype      = Q5_K - Small
llm_load_print_meta: model params     = 8.030 B
llm_load_print_meta: model size       = 5.162 GiB (5.521 BPW)
llm_load_print_meta: repeating layers = 4.424 GiB (5.445 BPW, 6.980 B parameters)
llm_load_print_meta: general.name     = Meta_Llama_3.1_8b_it
llm_load_print_meta: BOS token        = 128000 '<|begin_of_text|>'
llm_load_print_meta: EOS token        = 128009 '<|eot_id|>'
llm_load_print_meta: LF token         = 128 'Ä'
llm_load_print_meta: EOT token        = 128009 '<|eot_id|>'
llm_load_print_meta: max token length = 256
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 3 CUDA devices:
  Device 0: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
  Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
  Device 2: NVIDIA RTX A4000, compute capability 8.6, VMM: yes
llm_load_tensors: ggml ctx size =    0.27 MiB
llm_load_tensors: offloading 32 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 33/33 layers to GPU
llm_load_tensors:  CUDA_Host buffer size =   344.44 MiB
llm_load_tensors:      CUDA0 buffer size =  4941.00 MiB
........................................................................................
llama_new_context_with_model: n_ctx      = 1024
llama_new_context_with_model: n_batch    = 1024
llama_new_context_with_model: n_ubatch   = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base  = 500000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init:      CUDA0 KV buffer size =    82.00 MiB
llama_new_context_with_model: KV self size  =   82.00 MiB, K (iq4_nl):   18.00 MiB, V (f16):   64.00 MiB
llama_new_context_with_model:  CUDA_Host  output buffer size =     0.98 MiB
llama_new_context_with_model: pipeline parallelism enabled (n_copies=1)
llama_new_context_with_model:      CUDA0 compute buffer size =   266.50 MiB
llama_new_context_with_model:  CUDA_Host compute buffer size =    10.01 MiB
llama_new_context_with_model: graph nodes  = 933
llama_new_context_with_model: graph splits = 2

system_info: n_threads = 8 / 16 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
perplexity: tokenizing the input ..
perplexity: tokenization took 213.322 ms
perplexity: calculating perplexity over 211 chunks, n_ctx=512, batch_size=1024, n_seq=2
perplexity: 9.17 seconds per pass - ETA 16.12 minutes
[1]-nan,[2]-nan,[3]-nan,[4]-nan,[5]-nan,[6]-nan,[7]-nan,[8]-nan,[9]-nan,[10]-nan,[11]-nan,[12]-nan,[13]-nan,[14]-nan,[15]-nan,[16]-nan,[17]-nan,[18]-nan,[19]-nan,[20]-nan,[21]-nan,[22]-nan,[23]-nan,[24]-nan,[25]-nan,[26]-nan,[27]-nan,[28]-nan,[29]-nan,[30]-nan,[31]-nan,[32]-nan,[33]-nan,[34]-nan,[35]-nan,[36]-nan,[37]-nan,[38]-nan,[39]-nan,[40]-nan,[41]-nan,[42]-nan,[43]-nan,[44]-nan,[45]-nan,[46]-nan,[47]-nan,[48]-nan,[49]-nan,[50]-nan,[51]-nan,[52]-nan,[53]-nan,[54]-nan,[55]-nan,[56]-nan,[57]-nan,[58]-nan,[59]-nan,[60]-nan,[61]-nan,[62]-nan,[63]-nan,[64]-nan,[65]-nan,[66]-nan,[67]-nan,[68]-nan,[69]-nan,[70]-nan,[71]-nan,[72]-nan,[73]-nan,[74]-nan,[75]-nan,[76]-nan,[77]-nan,[78]-nan,[79]-nan,[80]-nan,[81]-nan,[82]-nan,[83]-nan,[84]-nan,[85]-nan,[86]-nan,[87]-nan,[88]-nan,[89]-nan,[90]-nan,[91]-nan,[92]-nan,[93]-nan,[94]-nan,[95]-nan,[96]-nan,[97]-nan,[98]-nan,[99]-nan,[100]-nan,[101]-nan,[102]-nan,[103]-nan,[104]-nan,[105]-nan,[106]-nan,[107]-nan,[108]-nan,[109]-nan,[110]-nan,[111]-nan,[112]-nan,[113]-nan,[114]-nan,[115]-nan,[116]-nan,[117]-nan,[118]-nan,[119]-nan,[120]-nan,[121]-nan,[122]-nan,[123]-nan,[124]-nan,[125]-nan,[126]-nan,[127]-nan,[128]-nan,[129]-nan,[130]-nan,[131]-nan,[132]-nan,[133]-nan,[134]-nan,[135]-nan,[136]-nan,[137]-nan,[138]-nan,[139]-nan,[140]-nan,[141]-nan,[142]-nan,[143]-nan,[144]-nan,[145]-nan,[146]-nan,[147]-nan,[148]-nan,[149]-nan,[150]-nan,[151]-nan,[152]-nan,[153]-nan,[154]-nan,[155]-nan,[156]-nan,[157]-nan,[158]-nan,[159]-nan,[160]-nan,[161]-nan,[162]-nan,[163]-nan,[164]-nan,[165]-nan,[166]-nan,[167]-nan,[168]-nan,[169]-nan,[170]-nan,[171]-nan,[172]-nan,[173]-nan,[174]-nan,[175]-nan,[176]-nan,[177]-nan,[178]-nan,[179]-nan,[180]-nan,[181]-nan,[182]-nan,[183]-nan,[184]-nan,[185]-nan,[186]-nan,[187]-nan,[188]-nan,[189]-nan,[190]-nan,[191]-nan,[192]-nan,[193]-nan,[194]-nan,[195]-nan,[196]-nan,[197]-nan,[198]-nan,[199]-nan,[200]-nan,[201]-nan,[202]-nan,[203]-nan,[204]-nan,[205]-nan,[206]-nan,[207]-nan,[208]-nan,[209]-nan,[210]-nan,[211]-nan,
Unexpected negative standard deviation of log(prob)

llama_print_timings:        load time =    1581.30 ms
llama_print_timings:      sample time =       0.00 ms /     1 runs   (    0.00 ms per token,      inf tokens per second)
llama_print_timings: prompt eval time =   47678.04 ms / 108032 tokens (    0.44 ms per token,  2265.87 tokens per second)
llama_print_timings:        eval time =       0.00 ms /     1 runs   (    0.00 ms per token,      inf tokens per second)
llama_print_timings:       total time =   52725.87 ms / 108033 tokens
@ikawrakow ikawrakow added the bug Something isn't working label Oct 23, 2024
@ikawrakow
Copy link
Owner

Thanks for the report. Happens for me too. I'll investigate.

@ikawrakow
Copy link
Owner

@Nexesenex

This is also broken on mainline llama.cpp, no?
With the latest llama.cpp (873279b1592e433c4d9eb5065091cc98473c7bee) without FA I get NaNs for any of the supported K-cache quantization types.

@ikawrakow
Copy link
Owner

CUDA on mainline llama.cpp without FA is broken with quantized K-cache for all models I tried (LLaMA-3.1-8B, LLaMA-3.2-3B, LLaMA-2-7B). So, I guess, this issue is inherited. Perhaps you should file a bug report there?

@Nexesenex
Copy link
Contributor Author

Indeed, it's on mainline also.
I'll holler them. ^^

@ikawrakow
Copy link
Owner

ikawrakow commented Oct 23, 2024

It was puzzling to me why Q6_0 works here but none of the other types, neither here nor on mainline. But I think I know what is the issue. I haven't implemented a MMQ kernel for Q6_0, so the K*Q matrix multiplication is done via dequantize K -> cuBLAS gemm. While all other types go via @JohannesGaessler MMQ kernels. There have been all these reports about llama.cpp producing gibberish for some models, the latest being the Granite models, and the typical fix is to set the K*Q matrix multiplication precision to F32. Well, if F16 is not precise enough for K*Q, then quantized precision is definitely not precise enough either. So, basically, the issue has existed in mainline llama.cpp since @JohannesGaessler switched the default for matrix multiplications to MMQ. Strange that nobody has noticed for so long.

@ikawrakow
Copy link
Owner

Thinking more about this, it is kind of strange. It does work on the CPU, where Q gets quantized to Q8_K when K is quantized, and Q8_K is less accurate than Q8_0 (one float scale per 256 weights for Q8_K vs 1 float scale per 32 for Q8_0). So, precision/range loss does not seem to be the likely cause. Instead, more likely, there is some other bug in the MMQ kernel that manifests itself only under specific conditions.

@ikawrakow
Copy link
Owner

ikawrakow commented Oct 24, 2024

@Nexesenex Does this PR fix it for you? It is approved and all, but I still get NaN's with a quantized model. It does appear to work with the f16 model, so there is at least some progress.

@JohannesGaessler
Copy link

I also get NaN with a q8_0 model when using -ctk q8_0, there are probably multiple bugs.

@ikawrakow
Copy link
Owner

I also get NaN with a q8_0 model when using -ctk q8_0, there are probably multiple bugs.

It is not just q8_0. Any quantized model with any quantized k-cache without FA produces NaNs on perplexity runs. If it helps you, TG appears to work. PP also works if I use -ub 8 to force the K*Q matrix multiplication to go via MMVQ.

@Nexesenex
Copy link
Contributor Author

Nexesenex commented Oct 24, 2024

@ikawrakow I just confirmed that all K quantum cache no-FA modes present on mainline are now working : ggerganov/llama.cpp#10011 (comment)

I also used ggerganov/llama.cpp#10015 while I was at it.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working mainline bug
Projects
None yet
Development

Successfully merging a pull request may close this issue.

3 participants