-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig_train_slu.yaml
73 lines (63 loc) · 1.89 KB
/
config_train_slu.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#
# SPDX-FileCopyrightText: Copyright © <2024> Idiap Research Institute <contact@idiap.ch>
#
# SPDX-FileContributor: Esau Villatoro-Tello <esau.villatoro@idiap.ch>
#
# SPDX-License-Identifier: GPL-3.0-only
#Experiment were performed on the SLURP dataset
dataset_name: "SLURP"
## SLURP files in XML format (hrc2 - files)
train_set: "/datasets/slurp/train"
dev_set: "/datasets/slurp/dev"
test_set: "/datasets/slurp/test"
## Here are the paths where the WCN will be searched
train_WCN_file: "/datasets/slurp/train/train_WCN.csv"
dev_WCN_file: "/datasets/slurp/dev/dev_WCN.csv"
test_WCN_file: "/datasets/slurp/test/test_WCN.csv"
test_set_audios: "/datasets/slurp/audios/"
# Running mode
# Two possible values 'slu_ft' and "evaluate_slu_ft".
# slu_ft trains the model on SLURP dataset for performing Intent Clasificaiton
# evaluate_slu_ft evaluates the accuracy of the alignments of the model
mode: "slu_ft"
#Parameters for the textual embeddings dimensionality [BERT-768]
text_dim: 768
#Acoustic features can be either "LFB" or "WCN"
#The dimensionality for WCN is 768
#The dimensionality for LFB is 80
acoustic_feats_type: "LFB"
acoustic_dim: 80
seed: 1111
## For the LISTENER
number_heads: 12
# FOR THE CORSS_ATTENTION
number_layers: 6
#FOR THE WCN ENCODER
wcn_num_of_layers: 12
wcn_num_attn_heads: 12
learning_rate: 0.00002
#learning_rate: 0.00009
dropout: 0.2
#BATCHSIZE 32 if 1 GPU, 128 if 4 GPUS, 256 if 8 GPUs available
batch_size: 32
epochs: 200
steps: 200
validate_after: 100
checkpoint_after: 10
save_after: 100
save_model: True
log_after: 100
patience: 20
# TextEmbeddings and Acoustic embeddings
text_model: "bert-base-uncased"
# This valiable must point to the checkpoint of the pretrained model
pretrained_model: "/chkpt/Pretrained_Model.pt"
#GPU parameters for DPP
distributed: Flase
num_jobs: 1
gpu: '0'
#Output folder
runs_folder: "/tmp/IC_results"
monitor: ["f1"]