-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_targets.R
50 lines (37 loc) · 1.54 KB
/
_targets.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
source("packages.R")
## Load your R files
lapply(list.files("./R", full.names = TRUE), source)
tar_plan(
data_all = read_rds(here("data/data_all_wa.rds")),
covariate_names = read_rds(here("data/covariate_names_all_wa.rds")),
factor_cov_nms = "ins_ind",
inner_test_index_list = read_rds(here("data/inner_test_index_list.rds")),
outer_test_index_list = read_rds(here("data/outer_test_index_list.rds")),
data_pct_mortality = add_pct_mortality(data_all),
test_train = prepare_test_train(data = data_pct_mortality,
outer_test_index_list = outer_test_index_list,
inner_test_index_list = inner_test_index_list,
inner_validation = 1,
outer_validation = 1,
covariate_names = covariate_names),
test_data = test_train$test_data,
train_data = test_train$train_data,
test_inds = test_train$test_inds,
model_formula = build_bgam_formula(factor_cov_nms = factor_cov_nms,
covariate_names = covariate_names),
bgam_fit_train = model_fit_bgam(
model_formula = model_formula,
data = train_data,
tune_run = 1,
mstop = 50
),
gbam_predict_test = predict(bgam_fit_train, newdata = test_data),
gbam_test_rmse = gbam_rmse(gbam_predict_test, test_data),
gbam_model_output = list(
rmse = gbam_test_rmse,
gambFitJ = bgam_fit_train,
gambPredJ = gbam_predict_test,
test_inds = test_inds,
data_all = data_pct_mortality
)
)