-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrajectoryRoutines.py
596 lines (483 loc) · 17.6 KB
/
trajectoryRoutines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
# -*- coding: utf-8 -*-
"""
Created on Thu Apr 30 11:59:47 2020
@author: Seo
"""
from __future__ import annotations
import time
import numpy as np
from enum import IntEnum
import pyqtgraph as pg
from localizationRoutines import *
from timingRoutines import Timer
from scipy.constants import speed_of_light as lightspd
import warnings
try:
import cupy as cp
def calcFOA(r_x, r_xdot, t_x, t_xdot, freq=30e6):
"""
Expects individual row vectors.
All numpy array shapes expected to match.
Assumed that arrays are either all cupy arrays or all numpy arrays,
operates agnostically using cupy/numpy.
"""
xp = cp.get_array_module(r_x)
lightspd = 299792458.0
radial = t_x - r_x # convention pointing towards transmitter
radial_n = radial / xp.linalg.norm(radial, axis=1).reshape(
(-1, 1)
) # don't remove this reshape, nor the axis arg
if radial_n.ndim == 1:
vradial = xp.dot(radial_n, r_xdot) - xp.dot(
radial_n, t_xdot
) # minus or plus?
else:
# vradial = np.zeros(len(radial_n))
# for i in range(len(radial_n)):
# vradial[i] = np.dot(radial_n[i,:],r_xdot[i,:]) - np.dot(radial_n[i,:], t_xdot[i,:])
# make distinct numpy calls instead of the loop
dot_radial_r = xp.sum(radial_n * r_xdot, axis=1)
dot_radial_t = xp.sum(radial_n * t_xdot, axis=1)
vradial = dot_radial_r - dot_radial_t
foa = vradial / lightspd * freq
return foa
except:
print("Skipping trajectoryRoutines cupy imports.")
# %%
class Trajectory:
class TauMethod(IntEnum):
First_Order_Velocity_Approximation = 0
Position_Vector_Chasing_Iterator = 1
def __init__(self, x0: np.ndarray):
"""
Initialises a trajectory object.
Parameters
----------
x0 : np.ndarray
Initial position vector. This is the position at t=0.
"""
if x0.ndim != 1:
raise ValueError("x0 must be a 1D array.")
if x0.size != 2 and x0.size != 3:
raise TypeError("x0 must represent a 2D or 3D point.")
self._x0 = x0
@property
def x0(self):
"""
Initial position vector.
"""
return self._x0
def at(self, t: np.ndarray):
"""
Method to return the position at given time(s).
"""
raise NotImplementedError("This is only implemented for subclasses.")
def to(
self,
rx: Trajectory,
t: np.ndarray,
method: int = TauMethod.First_Order_Velocity_Approximation,
):
"""
Method to return the time taken by a photon to travel from the current trajectory
from time(s) 't' to when it hits the 'rx' trajectory.
In signal processing terms, 't' is the known transmit time.
In general, this is not just the time taken between the two trajectories at a given time point,
as that does not take into account the distance travelled by the 'rx' while the photon is in flight.
Work in progress.
"""
if isinstance(rx, StationaryTrajectory):
# Simply calculate the time directly
return np.linalg.norm(self.at(t) - rx.at(t), axis=1) / lightspd
elif method == Trajectory.TauMethod.First_Order_Velocity_Approximation:
tau = self._quadraticVelocityMethod(rx, t)
tau = np.max(
tau, axis=1
) # Take the larger one, which is generally the positive one
return tau
def frm(
self,
tx: Trajectory,
t: np.ndarray,
method: int = TauMethod.First_Order_Velocity_Approximation,
):
"""
Method to return the time taken by a photon to travel to the current trajectory
at time(s) 't' from when it begins from the 'tx' trajectory.
In signal processing terms, 't' is the known receive time.
In general, this is not just the time taken between the two trajectories at a given time point,
as that does not take into account the distance travelled by the 'tx' while the photon is in flight.
"""
if isinstance(tx, StationaryTrajectory):
# Simply calculate the time directly
return np.linalg.norm(self.at(t) - tx.at(t), axis=1) / lightspd
elif method == Trajectory.TauMethod.First_Order_Velocity_Approximation:
tau = self._quadraticVelocityMethod(tx, t)
if np.all(tau < 0):
raise ValueError(
"Not sure how to select tau; both negative valued")
tau = -np.min(
tau, axis=1
) # Take the smaller one, which is generally the negative one
return tau
def _scalarToArray(self, t: np.ndarray, dtype: np.dtype = np.float64):
"""
Returns t as a numpy array if it is a single Pythonic scalar value,
otherwise just returns t.
Parameters
----------
t : np.ndarray
The time vector or time scalar.
dtype : np.dtype, optional
The data type of the returned array. This is only used if t is a scalar.
If it is already an array, it will be returned as-is.
Returns
-------
np.ndarray
The time vector.
"""
if isinstance(t, float) or isinstance(t, int):
t = np.array([t], dtype=dtype)
return t
# Tau approximation methods
def _quadraticVelocityMethod(self, rx: ConstantVelocityTrajectory, t: np.ndarray):
if isinstance(rx, ConstantVelocityTrajectory):
# Define the initial connecting vector
D = self.at(t) - rx.at(t)
# Define the quadratic coefficients
a = np.linalg.norm(rx.v) ** 2 - lightspd**2
b = -2 * D @ rx.v.reshape((-1, 1))
c = np.linalg.norm(D) ** 2
# Solve the quadratic equation
disc = b**2 - 4 * a * c
tau = np.vstack((np.sqrt(disc), -np.sqrt(disc)))
tau = (-b + tau) / (2 * a)
tau = tau.T
return tau
else:
raise TypeError(
"Quadratic velocity method for to() is only applicable to ConstantVelocityTrajectory."
)
class StationaryTrajectory(Trajectory):
def at(self, t: np.ndarray):
"""
Returns the constant position at all time points.
Parameters
----------
t : np.ndarray
Array of time values at which to calculate the position.
Must be a 1D array. A single value will be converted to a numpy array automatically.
"""
t = self._scalarToArray(t)
return self._x0 + np.zeros_like(t).reshape((-1, 1))
class ConstantVelocityTrajectory(Trajectory):
def __init__(self, x0: np.ndarray, v: np.ndarray):
super().__init__(x0)
# Ensure same dimensions
if v.shape != self.x0.shape:
raise np.ValueError("v must be the same shape as x0.")
self._v = v
@property
def v(self):
"""
Velocity vector.
"""
return self._v
def at(self, t: np.ndarray):
"""
Calculates the position at time t by multiplying the velocity vector.
Parameters
----------
t : np.ndarray
Array of time values at which to calculate the position.
Must be a 1D array. A single value will be converted to a numpy array automatically.
"""
t = self._scalarToArray(t)
if not isinstance(t, np.ndarray):
raise TypeError("t must be a numpy array.")
if t.ndim != 1:
raise np.ValueError("t must be a 1D array.")
return self._x0 + t.reshape((-1, 1)) * self._v
class InterpolatedTrajectory(Trajectory):
def __init__(self, xp: np.ndarray, tp: np.ndarray):
# Transpose into 3xN so that interpolation is easier
self._xp = xp.T
self._tp = tp # This is a 1D array
# Check if t=0 is defined
if 0.0 >= self._tp[0] and 0.0 <= self._tp[-1]:
# Derive the value at t=0
x0 = np.vstack(
(
np.interp(0.0, self._tp, self._xp[0, :]),
np.interp(0.0, self._tp, self._xp[1, :]),
np.interp(0.0, self._tp, self._xp[2, :]),
)
)
x0 = x0.reshape(-1)
else:
x0 = None
super().__init__(x0)
@property
def xp(self):
"""
Defined position vectors.
"""
return self._xp
@property
def tp(self):
"""
Defined time points.
"""
return self._tp
# %%
def createLinearTrajectory(totalSamples, pos1, pos2, speed, sampleTime, start_coeff=0):
# Define connecting vector between two anchors
dirVec = pos2 - pos1
anchorDist = np.linalg.norm(dirVec)
dirVecNormed = dirVec / np.linalg.norm(dirVec)
# Define the start position
pos_start = pos1 + start_coeff * dirVec
# Calculate percentage of anchor-anchor distance travelled per sample
distPerSample = sampleTime * speed
percentPerSample = distPerSample / anchorDist
# Formulate in terms of multiples of anchorDist
percentAnchorDist = start_coeff + \
np.arange(totalSamples) * percentPerSample
# First, correct the ones that have returned full cycles
percentAnchorDist = np.mod(
percentAnchorDist, 2
) # 2 means it is back at anchor pos1 (not pos_start necessarily!)
# Then, correct the ones which are in reverse direction
reverseIdx = np.argwhere(percentAnchorDist > 1.0)
percentAnchorDist[reverseIdx] = (
2.0 - percentAnchorDist[reverseIdx]
) # this will move it backwards appropriately e.g. 1.1 -> 0.9
# These indices have the velocities flipped
r_xdot = (
np.zeros((totalSamples, len(pos1))) + dirVecNormed * speed
) # everything is identical, except for the flips which are handled next
r_xdot[reverseIdx, :] = -r_xdot[reverseIdx, :]
# Now compute the positions r_x
r_x = pos1 + percentAnchorDist.reshape((-1, 1)) * dirVec
return r_x, r_xdot
def createCircularTrajectory(
totalSamples,
r_a=100000.0,
desiredSpeed=100.0,
r_h=300.0,
sampleTime=3.90625e-6,
phi=0,
):
# initialize a bunch of rx points in a circle in 3d
dtheta_per_s = desiredSpeed / r_a # rad/s
arcangle = totalSamples * sampleTime * dtheta_per_s # rad
r_theta = np.arange(phi, phi + arcangle, dtheta_per_s *
sampleTime)[:totalSamples]
r_x_x = r_a * np.cos(r_theta)
r_x_y = r_a * np.sin(r_theta)
r_x_z = np.zeros(len(r_theta)) + r_h
r_x = np.vstack((r_x_x, r_x_y, r_x_z)).transpose()
r_xdot_x = r_a * -np.sin(r_theta) * dtheta_per_s
r_xdot_y = r_a * np.cos(r_theta) * dtheta_per_s
r_xdot_z = np.zeros(len(r_theta))
r_xdot = np.vstack((r_xdot_x, r_xdot_y, r_xdot_z)).transpose()
return r_x, r_xdot, arcangle, dtheta_per_s
def createTriangularSpacedPoints(
numPts: int, dist: float = 1.0, startPt: np.ndarray = np.array([0, 0]), make3d=False
):
"""
Spawns locations in a set, beginning with startPt. Each location is spaced
'dist' apart from any other location, e.g.
2 1
3 O 0
4 5
The alignment is in the shape of triangles. The order of generation is anticlockwise as shown.
"""
if numPts < 2:
raise Exception("Please specify at least 2 points.")
origin = np.array([0.0, 0.0])
ptList = [origin]
dirVecs = (
np.array(
[
[1.0, 0.0],
[0.5, np.sqrt(3) / 2],
[-0.5, np.sqrt(3) / 2],
[-1.0, 0.0],
[-0.5, -np.sqrt(3) / 2],
[0.5, -np.sqrt(3) / 2],
[1.0, 0.0],
]
)
* dist
) # cyclical to ensure indexing later on
layer1ptr = 0
turnLayer = 0
i = 1
while i < numPts:
idx = i - 1 # we go back to 0-indexing
# test for layer
layer = 1
while idx >= (layer + 1) * (layer / 2) * 6:
layer += 1
# print("i: %d, idx: %d, layer: %d"% (i,idx,layer)) # verbose index printing
if layer == 1: # then it's simple, just take the genVec and propagate
newPt = origin + dirVecs[idx]
ptList.append(newPt)
i += 1
else:
# use the pointer at layer 1
layerptr = origin + dirVecs[layer1ptr]
if turnLayer == 0: # go straight all the way
for d in range(layer - 1):
layerptr = layerptr + dirVecs[layer1ptr]
ptList.append(np.copy(layerptr))
turnLayer = layer - 1 # now set it to turn
else:
for d in range(turnLayer - 1): # go straight for some layers
layerptr = layerptr + dirVecs[layer1ptr]
for d in range(layer - turnLayer):
layerptr = layerptr + dirVecs[layer1ptr + 1]
ptList.append(np.copy(layerptr))
turnLayer = turnLayer - 1 # decrement
if (
turnLayer == 0
): # if we have hit turnLayer 0, time to move the layer1ptr
layer1ptr = (layer1ptr + 1) % 6
i += 1
# swap to array for cleanliness
ptList = np.array(ptList)
ptList = ptList + startPt # move the origin
if make3d:
ptList = np.pad(ptList, ((0, 0), (0, 1))) # make into 3-d
return ptList
# %% Containers
class Transceiver:
def __init__(
self,
x: np.ndarray,
xdot: np.ndarray,
t: np.ndarray,
symbol: str = "x",
symbolBrush: str = "b",
symbolPen: str = "b",
):
self.x = x
self.xdot = xdot
self.t = t
self.symbol = symbol
self.symbolBrush = symbolBrush
self.symbolPen = symbolPen
@classmethod
def asStationary(cls, x: np.ndarray, t: np.ndarray):
return cls(x, np.zeros(x.shape), t)
@staticmethod
def plotFlat2d(transceivers: list, idx: np.ndarray):
win = pg.GraphicsLayoutWidget()
ax = win.addPlot()
for i, transceiver in enumerate(transceivers):
if i > 0:
assert np.all(transceiver.t == transceivers[0].t)
# Plot the point
ax.plot(
transceiver.x[idx, 0],
transceiver.x[idx, 1],
pen=None,
symbol=transceiver.symbol,
symbolBrush=transceiver.symbolBrush,
symbolPen=transceiver.symbolPen,
)
win.show()
return win, ax
##########################
class Receiver(Transceiver):
def __init__(
self,
x: np.ndarray,
xdot: np.ndarray,
t: np.ndarray,
symbol: str = "x",
symbolBrush: str = "r",
symbolPen: str = "r",
):
super().__init__(x, xdot, t, symbol, symbolBrush, symbolPen)
##########################
class Transmitter(Transceiver):
def __init__(
self,
x: np.ndarray,
xdot: np.ndarray,
t: np.ndarray,
symbol: str = "o",
symbolBrush: str = "b",
symbolPen: str = "b",
):
super().__init__(x, xdot, t, symbol, symbolBrush, symbolPen)
def theoreticalRangeDiff(self, rx1: Receiver, rx2: Receiver):
assert np.all(self.t == rx1.t)
assert np.all(self.t == rx2.t)
range1 = np.linalg.norm(rx1.x - self.x, axis=1)
range2 = np.linalg.norm(rx2.x - self.x, axis=1)
return range2 - range1
def plotHyperbolaFlat(
self,
rx1: Receiver,
rx2: Receiver,
rangediff: float = None,
z: float = 0,
ax: pg.PlotItem = None,
):
if rangediff is None:
rangediff = self.theoreticalRangeDiff(rx1, rx2)
timer = Timer()
timer.start()
hyperbola = generateHyperbolaXY(
200, rangediff, rx1.x[0], rx2.x[0], orthostep=0.1
)
timer.end()
if ax is None:
fig = pg.GraphicsLayoutWidget()
ax = fig.addPlot()
hypItem = ax.plot(hyperbola[:, 0], hyperbola[:, 1], pen="k")
hypItem.setSymbol
return hyperbola, hypItem
# %%
if __name__ == "__main__":
from timingRoutines import Timer
timer = Timer()
from plotRoutines import *
closeAllFigs()
rxHeight = 1
rxA = Receiver.asStationary(np.array([[0, -1, rxHeight]]), np.array([0]))
rxB = Receiver.asStationary(np.array([[0, +1, rxHeight]]), np.array([0]))
tx = Transmitter.asStationary(np.array([[0, 0.51, 0]]), np.array([0]))
rd = tx.theoreticalRangeDiff(rxA, rxB)
print(rd)
win, ax = tx.plotFlat2d([rxA, rxB, tx], np.array([0]))
from localizationRoutines import *
lightspd = 299792458.0
xr = np.arange(-10, 10, 0.1)
yr = np.arange(-12, 12, 0.1)
costgrid = gridSearchTDOA(
rxA.x, rxB.x, rd / lightspd, np.array([1e-9]), xr, yr, 0)
pgPlotHeatmap(
np.exp(-costgrid.reshape((yr.size, xr.size)).T),
xr[0],
yr[0],
xr[-1] - xr[0],
yr[-1] - yr[0],
window=ax,
autoBorder=True,
)
# Test hyperbola plots
# timer.start()
hyperbola, hypItem = tx.plotHyperbolaFlat(rxA, rxB, ax=ax)
# tx.plotHyperbolaFlat(rxA, rxB, ax=ax)
# timer.end()
# hypItem.setSymbol('x')
# Checking
plt.plot(
np.linalg.norm(hyperbola - rxB.x[0], axis=1)
- np.linalg.norm(hyperbola - rxA.x[0], axis=1)
)
plt.hlines([rd], 0, hyperbola.shape[0], colors="r", linestyles="dashed")