-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdeconvolutionTests.py
151 lines (128 loc) · 4.39 KB
/
deconvolutionTests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# -*- coding: utf-8 -*-
"""
Created on Thu Apr 30 15:04:13 2020
@author: Seo
"""
# add the outside code routines
import sys
addedpaths = ["F:\\PycharmProjects\\pydsproutines"]
for path in addedpaths:
if path not in sys.path:
sys.path.append(path)
# imports
import numpy as np
import scipy as sp
import scipy.signal as sps
import pyqtgraph as pg
from signalCreationRoutines import *
from xcorrRoutines import *
from filterCreationRoutines import *
from pgplotRoutines import *
from PyQt5.QtWidgets import QApplication
import time
# end of imports
# %% ============== generate a sample signal to be received at each sensor timestamp
# parameters
numBitsPerBurst = 48
baud = 16000
numBursts = 20
numBitsTotal = numBitsPerBurst * numBursts
m = 2 # m-ary
h = 1.0 / m
up = 16
print("Duration of burst = %fs" % (numBitsTotal / baud))
# create bits
bits = randBits(numBitsTotal, m)
# create cpfsk signal
gflat = np.ones(up) / (2 * up)
# create SRC4 CPFSK symbols
gSRC4 = makeSRC4(np.arange(4 * up) / up, 1)
gSRC4 = makeScaledSRC4(up, 1.0) / up
syms0, fs, data = makePulsedCPFSKsyms(
bits, baud, g=gSRC4, up=up
) # new method of creation
T = 1 / fs
print("\nWorking at fs = %fHz, sample period T = %gs" % (fs, T))
rxLen = 3 * len(syms0)
# =========================================== end of template signal generation
# %% now add it to 2 separate rx versions
numTxCopies = 3
rx1_startIdx = np.random.randint(-60, 60, size=numTxCopies) + len(syms0)
rx2_startIdx = np.random.randint(-60, 60, size=numTxCopies) + len(syms0)
snr_inband_linear1 = np.random.rand(len(rx1_startIdx)) * 36 + 4
snr_inband_linear2 = (
np.random.rand(len(rx1_startIdx)) * 36 + 4
) # also expected to be the same..
print("\nSNR_inband_dB = ")
print(10 * np.log10(snr_inband_linear1))
print(10 * np.log10(snr_inband_linear2))
fshifts1 = []
fshifts2 = [] # for now let's just not bother...
signalList = [syms0 for i in range(len(rx1_startIdx))]
noise1, rx1 = addManySigToNoise(
rxLen, rx1_startIdx, signalList, baud, fs, snr_inband_linear1, fshifts=None
)
noise2, rx2 = addManySigToNoise(
rxLen, rx2_startIdx, signalList, baud, fs, snr_inband_linear2, fshifts=None
)
print("\nActual start indices are:")
print(rx1_startIdx)
print(rx2_startIdx)
print("\nActual TD (samples):")
actual_td_samples = rx2_startIdx - rx1_startIdx
print(actual_td_samples)
# get theoretical peak possibilities
theo_peaks = theoreticalMultiPeak(rx1_startIdx, rx2_startIdx)
print("\nTheoretical peaks: ")
print(theo_peaks)
# slice one part of rx1
cutoutStartIdx = len(syms0)
rx1_cutout = rx1[len(syms0) : len(syms0) + 4096]
cutoutFreq = makeFreq(len(rx1_cutout), fs)
# use it to xcorr
shifts = np.arange(-25 * up, 25 * up + 1) + cutoutStartIdx
qf2, flist = fastXcorr(rx1_cutout, rx2, freqsearch=True, outputCAF=False, shifts=shifts)
effSNR = convertQF2toEffSNR(qf2)
fig1 = pg.GraphicsWindow(title="effSNR")
fig1_1 = fig1.addPlot(0, 0)
fig1_1.plot(shifts - cutoutStartIdx, effSNR)
pgPlotDeltaFuncs(fig1_1, theo_peaks, np.max(effSNR), "r")
pgPlotDeltaFuncs(fig1_1, actual_td_samples, np.max(effSNR), "b")
fig1_2 = fig1.addPlot(1, 0)
fig1_2.plot(shifts - cutoutStartIdx, cutoutFreq[flist])
fig1_2.setXLink(fig1_1)
# %% create a gaussian window and attempt to overlay it
window = sps.gaussian(len(effSNR), std=1 / (2 * baud) / T)
fig1_1.plot(
np.arange(theo_peaks[0] - 400, theo_peaks[0] + 401),
window * effSNR[np.argwhere(shifts - cutoutStartIdx == theo_peaks[0]).flatten()],
symbol="x",
)
# seems correct, how about we try deconvolving with this
G = np.fft.fft(window)
# G_fixed = G + 0.0001 # prevent divides by 0, doesn't seem to work
H = np.fft.fft(effSNR)
H_fixed = H
H_fixed[50:750] = 0
F = H / G
# F_fixed = H / G_fixed
F_fixed2 = H_fixed / G
deconvolved = np.fft.ifft(F)
# dec_fixed = np.fft.ifft(F_fixed) # doesn't seem to work?
dec_fixed2 = np.fft.ifft(F_fixed2)
fig2 = pg.GraphicsWindow(title="effSNR before and after deconvolution")
fig2_1 = fig2.addPlot(0, 0)
fig2_1.plot(shifts - cutoutStartIdx, effSNR)
fig2_2 = fig2.addPlot(1, 0)
fig2_2.plot(shifts - cutoutStartIdx, np.abs(np.fft.ifftshift(dec_fixed2)))
pgPlotDeltaFuncs(fig2_2, theo_peaks, np.max(np.abs(dec_fixed2)), "r")
pgPlotDeltaFuncs(fig2_2, actual_td_samples, np.max(np.abs(dec_fixed2)), "b")
# # ???
# testdelta = np.zeros(window.shape)
# testdelta[0] = 1
# testc = np.convolve(window, testdelta) # standard way
# c_f = np.fft.fft(testdelta)
# c_h = c_f * G
# h = np.fft.ifft(c_h)
# pg.plot(testc)
# pg.plot(np.real(h))