diff --git a/python/pyspark/ml/evaluation.py b/python/pyspark/ml/evaluation.py index 09cdf9b6a629a..aa8dbe708a115 100644 --- a/python/pyspark/ml/evaluation.py +++ b/python/pyspark/ml/evaluation.py @@ -20,12 +20,13 @@ from pyspark import since, keyword_only from pyspark.ml.wrapper import JavaParams from pyspark.ml.param import Param, Params, TypeConverters -from pyspark.ml.param.shared import HasLabelCol, HasPredictionCol, HasRawPredictionCol +from pyspark.ml.param.shared import HasLabelCol, HasPredictionCol, HasRawPredictionCol, \ + HasFeaturesCol from pyspark.ml.common import inherit_doc from pyspark.ml.util import JavaMLReadable, JavaMLWritable __all__ = ['Evaluator', 'BinaryClassificationEvaluator', 'RegressionEvaluator', - 'MulticlassClassificationEvaluator'] + 'MulticlassClassificationEvaluator', 'ClusteringEvaluator'] @inherit_doc @@ -325,6 +326,77 @@ def setParams(self, predictionCol="prediction", labelCol="label", kwargs = self._input_kwargs return self._set(**kwargs) + +@inherit_doc +class ClusteringEvaluator(JavaEvaluator, HasPredictionCol, HasFeaturesCol, + JavaMLReadable, JavaMLWritable): + """ + .. note:: Experimental + + Evaluator for Clustering results, which expects two input + columns: prediction and features. + + >>> from pyspark.ml.linalg import Vectors + >>> featureAndPredictions = map(lambda x: (Vectors.dense(x[0]), x[1]), + ... [([0.0, 0.5], 0.0), ([0.5, 0.0], 0.0), ([10.0, 11.0], 1.0), + ... ([10.5, 11.5], 1.0), ([1.0, 1.0], 0.0), ([8.0, 6.0], 1.0)]) + >>> dataset = spark.createDataFrame(featureAndPredictions, ["features", "prediction"]) + ... + >>> evaluator = ClusteringEvaluator(predictionCol="prediction") + >>> evaluator.evaluate(dataset) + 0.9079... + >>> ce_path = temp_path + "/ce" + >>> evaluator.save(ce_path) + >>> evaluator2 = ClusteringEvaluator.load(ce_path) + >>> str(evaluator2.getPredictionCol()) + 'prediction' + + .. versionadded:: 2.3.0 + """ + metricName = Param(Params._dummy(), "metricName", + "metric name in evaluation (silhouette)", + typeConverter=TypeConverters.toString) + + @keyword_only + def __init__(self, predictionCol="prediction", featuresCol="features", + metricName="silhouette"): + """ + __init__(self, predictionCol="prediction", featuresCol="features", \ + metricName="silhouette") + """ + super(ClusteringEvaluator, self).__init__() + self._java_obj = self._new_java_obj( + "org.apache.spark.ml.evaluation.ClusteringEvaluator", self.uid) + self._setDefault(metricName="silhouette") + kwargs = self._input_kwargs + self._set(**kwargs) + + @since("2.3.0") + def setMetricName(self, value): + """ + Sets the value of :py:attr:`metricName`. + """ + return self._set(metricName=value) + + @since("2.3.0") + def getMetricName(self): + """ + Gets the value of metricName or its default value. + """ + return self.getOrDefault(self.metricName) + + @keyword_only + @since("2.3.0") + def setParams(self, predictionCol="prediction", featuresCol="features", + metricName="silhouette"): + """ + setParams(self, predictionCol="prediction", featuresCol="features", \ + metricName="silhouette") + Sets params for clustering evaluator. + """ + kwargs = self._input_kwargs + return self._set(**kwargs) + if __name__ == "__main__": import doctest import tempfile