-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
193 lines (164 loc) · 5.45 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#include <iostream>
#include <iomanip>
#include "inference.h"
#include <filesystem>
#include <fstream>
#include <random>
void Detector(YOLO_V8*& p) {
std::filesystem::path current_path = std::filesystem::current_path();
std::filesystem::path imgs_path = current_path / "images";
for (auto& i : std::filesystem::directory_iterator(imgs_path))
{
if (i.path().extension() == ".jpg" || i.path().extension() == ".png" || i.path().extension() == ".jpeg")
{
std::string img_path = i.path().string();
cv::Mat img = cv::imread(img_path);
std::vector<DL_RESULT> res;
p->RunSession(img, res);
for (auto& re : res)
{
cv::RNG rng(cv::getTickCount());
cv::Scalar color(rng.uniform(0, 256), rng.uniform(0, 256), rng.uniform(0, 256));
cv::rectangle(img, re.box, color, 3);
float confidence = floor(100 * re.confidence) / 100;
std::cout << std::fixed << std::setprecision(2);
std::string label = p->classes[re.classId] + " " +
std::to_string(confidence).substr(0, std::to_string(confidence).size() - 4);
cv::rectangle(
img,
cv::Point(re.box.x, re.box.y - 25),
cv::Point(re.box.x + label.length() * 15, re.box.y),
color,
cv::FILLED
);
cv::putText(
img,
label,
cv::Point(re.box.x, re.box.y - 5),
cv::FONT_HERSHEY_SIMPLEX,
0.75,
cv::Scalar(0, 0, 0),
2
);
}
std::cout << "Press any key to exit" << std::endl;
cv::imshow("Result of Detection", img);
cv::waitKey(0);
cv::destroyAllWindows();
}
}
}
void Classifier(YOLO_V8*& p)
{
std::filesystem::path current_path = std::filesystem::current_path();
std::filesystem::path imgs_path = current_path;// / "images"
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<int> dis(0, 255);
for (auto& i : std::filesystem::directory_iterator(imgs_path))
{
if (i.path().extension() == ".jpg" || i.path().extension() == ".png")
{
std::string img_path = i.path().string();
//std::cout << img_path << std::endl;
cv::Mat img = cv::imread(img_path);
std::vector<DL_RESULT> res;
char* ret = p->RunSession(img, res);
float positionY = 50;
for (int i = 0; i < res.size(); i++)
{
int r = dis(gen);
int g = dis(gen);
int b = dis(gen);
cv::putText(img, std::to_string(i) + ":", cv::Point(10, positionY), cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(b, g, r), 2);
cv::putText(img, std::to_string(res.at(i).confidence), cv::Point(70, positionY), cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(b, g, r), 2);
positionY += 50;
}
cv::imshow("TEST_CLS", img);
cv::waitKey(0);
cv::destroyAllWindows();
//cv::imwrite("E:\\output\\" + std::to_string(k) + ".png", img);
}
}
}
int ReadCocoYaml(YOLO_V8*& p) {
// Open the YAML file
std::ifstream file("coco.yaml");
if (!file.is_open())
{
std::cerr << "Failed to open file" << std::endl;
return 1;
}
// Read the file line by line
std::string line;
std::vector<std::string> lines;
while (std::getline(file, line))
{
lines.push_back(line);
}
// Find the start and end of the names section
std::size_t start = 0;
std::size_t end = 0;
for (std::size_t i = 0; i < lines.size(); i++)
{
if (lines[i].find("names:") != std::string::npos)
{
start = i + 1;
}
else if (start > 0 && lines[i].find(':') == std::string::npos)
{
end = i;
break;
}
}
// Extract the names
std::vector<std::string> names;
for (std::size_t i = start; i < end; i++)
{
std::stringstream ss(lines[i]);
std::string name;
std::getline(ss, name, ':'); // Extract the number before the delimiter
std::getline(ss, name); // Extract the string after the delimiter
names.push_back(name);
}
p->classes = names;
return 0;
}
void DetectTest()
{
YOLO_V8* yoloDetector = new YOLO_V8;
ReadCocoYaml(yoloDetector);
DL_INIT_PARAM params;
params.rectConfidenceThreshold = 0.1;
params.iouThreshold = 0.5;
params.modelPath = "yolov8n.onnx";
params.imgSize = { 640, 640 };
#ifdef USE_CUDA
params.cudaEnable = true;
// GPU FP32 inference
params.modelType = YOLO_DETECT_V8;
// GPU FP16 inference
//Note: change fp16 onnx model
//params.modelType = YOLO_DETECT_V8_HALF;
#else
// CPU inference
params.modelType = YOLO_DETECT_V8;
params.cudaEnable = false;
#endif
yoloDetector->CreateSession(params);
Detector(yoloDetector);
}
void ClsTest()
{
YOLO_V8* yoloDetector = new YOLO_V8;
std::string model_path = "cls.onnx";
ReadCocoYaml(yoloDetector);
DL_INIT_PARAM params{ model_path, YOLO_CLS, {224, 224} };
yoloDetector->CreateSession(params);
Classifier(yoloDetector);
}
int main()
{
//DetectTest();
ClsTest();
}