-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathpreprocess.r
45 lines (40 loc) · 1.46 KB
/
preprocess.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
load("k200fut.RData")
fut$day_roc = fut$close/Lag(fut$close)-1
fut$class = ifelse(fut$day_roc > 0.005,1,ifelse(fut$day_roc < -0.005,-1,0))
win = 20;
sd = 2
bb = BBands(fut$close,n = win, sd =sd)
bb$width = (bb$up-bb$dn)/bb$mavg # width
bb = na.omit(bb)
bb$squeeze = rollapply(bb$width,width=60,function(x) quantile(x,prob=0.03), by=1,align = 'right')
df = cbind(fut,bb)
df = na.omit(df)
df$bb = ifelse(df$close > df$up,0.5,ifelse(df$close < df$dn,-0.5,0))
for (i in 1:4) {
df[,i] = df[,i]/df$mavg - 1
}
df = df[,c("open","high","low","close","bb","pctB","squeeze","width","class")]
df_train = df
rollingwindow = 8
ff_all = ffl_all = NULL
for ( i in 1:(nrow(df_train)-rollingwindow)) {
# feature
ff = df_train[i:(i+rollingwindow-1),-ncol(df)]
ff=data.frame(ff)
row.names(ff) = colnames(ff) = NULL
ff_flat = unlist(ff)
ff_all = rbind(ff_all,ff_flat)
# label
ffl = df_train[i+rollingwindow,"class"]
ffl$c3 = ffl$c2 = ffl$c1 = 0
ffl$c1 = ifelse(ffl$class == 1,1,ffl$c1)
ffl$c2 = ifelse(ffl$class == 0,1,ffl$c2)
ffl$c3 = ifelse(ffl$class == -1,1,ffl$c3)
ffl = ffl[,2:4]
ffl=data.frame(ffl)
row.names(ffl) = colnames(ffl) = NULL
ffl_flat = unlist(ffl)
ffl_all = rbind(ffl_all,ffl_flat)
}
write.table(round(ff_all,5),"C:/Users/home/Desktop/df_train_feature.csv",row.names = F,col.names = F,sep=",")
write.table(ffl_all,"C:/Users/home/Desktop/df_train_label.csv",row.names = F,col.names = F,sep=",")