-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathtrain_baseline.py
148 lines (125 loc) · 6.28 KB
/
train_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import numpy as np
import torch
import torch.optim
import os
from methods import backbone
from methods.backbone import model_dict
from data.datamgr import SimpleDataManager, SetDataManager
from methods.baselinetrain import BaselineTrain
from methods.protonet import ProtoNet
from methods.matchingnet import MatchingNet
from methods.relationnet import RelationNet
from methods.gnnnet import GnnNet
from options import parse_args, get_resume_file, load_warmup_state
def train(base_loader, val_loader, model, start_epoch, stop_epoch, params):
# get optimizer and checkpoint path
optimizer = torch.optim.Adam(model.parameters())
if not os.path.isdir(params.checkpoint_dir):
os.makedirs(params.checkpoint_dir)
# for validation
max_acc = 0
total_it = 0
# start
for epoch in range(start_epoch,stop_epoch):
model.train()
total_it = model.train_loop(epoch, base_loader, optimizer, total_it) #model are called by reference, no need to return
model.eval()
acc = model.test_loop( val_loader)
if acc > max_acc :
print("best model! save...")
max_acc = acc
outfile = os.path.join(params.checkpoint_dir, 'best_model.tar')
torch.save({'epoch':epoch, 'state':model.state_dict()}, outfile)
else:
print("GG! best accuracy {:f}".format(max_acc))
if ((epoch + 1) % params.save_freq==0) or (epoch==stop_epoch-1):
outfile = os.path.join(params.checkpoint_dir, '{:d}.tar'.format(epoch))
torch.save({'epoch':epoch, 'state':model.state_dict()}, outfile)
return model
# --- main function ---
if __name__=='__main__':
# set numpy random seed
np.random.seed(10)
# parser argument
params = parse_args('train')
print('--- baseline training: {} ---\n'.format(params.name))
print(params)
# output and tensorboard dir
params.tf_dir = '%s/log/%s'%(params.save_dir, params.name)
params.checkpoint_dir = '%s/checkpoints/%s'%(params.save_dir, params.name)
if not os.path.isdir(params.checkpoint_dir):
os.makedirs(params.checkpoint_dir)
# dataloader
print('\n--- prepare dataloader ---')
if params.dataset == 'multi':
print(' train with multiple seen domains (unseen domain: {})'.format(params.testset))
datasets = ['miniImagenet', 'cars', 'places', 'cub', 'plantae']
datasets.remove(params.testset)
base_file = [os.path.join(params.data_dir, dataset, 'base.json') for dataset in datasets]
val_file = os.path.join(params.data_dir, 'miniImagenet', 'val.json')
else:
print(' train with single seen domain {}'.format(params.dataset))
base_file = os.path.join(params.data_dir, params.dataset, 'base.json')
val_file = os.path.join(params.data_dir, params.dataset, 'val.json')
# model
print('\n--- build model ---')
if 'Conv' in params.model:
image_size = 84
else:
image_size = 224
if params.method in ['baseline', 'baseline++'] :
print(' pre-training the feature encoder {} using method {}'.format(params.model, params.method))
base_datamgr = SimpleDataManager(image_size, batch_size=16)
base_loader = base_datamgr.get_data_loader( base_file , aug=params.train_aug )
val_datamgr = SimpleDataManager(image_size, batch_size=64)
val_loader = val_datamgr.get_data_loader(val_file, aug=False)
if params.method == 'baseline':
model = BaselineTrain(model_dict[params.model], params.num_classes, tf_path=params.tf_dir)
elif params.method == 'baseline++':
model = BaselineTrain(model_dict[params.model], params.num_classes, loss_type='dist', tf_path=params.tf_dir)
elif params.method in ['protonet','matchingnet','relationnet', 'relationnet_softmax', 'gnnnet']:
print(' baseline training the model {} with feature encoder {}'.format(params.method, params.model))
#if test_n_way is smaller than train_n_way, reduce n_query to keep batch size small
n_query = max(1, int(16* params.test_n_way/params.train_n_way))
train_few_shot_params = dict(n_way = params.train_n_way, n_support = params.n_shot)
base_datamgr = SetDataManager(image_size, n_query = n_query, **train_few_shot_params)
base_loader = base_datamgr.get_data_loader( base_file , aug = params.train_aug )
test_few_shot_params = dict(n_way = params.test_n_way, n_support = params.n_shot)
val_datamgr = SetDataManager(image_size, n_query = n_query, **test_few_shot_params)
val_loader = val_datamgr.get_data_loader( val_file, aug = False)
if params.method == 'protonet':
model = ProtoNet( model_dict[params.model], tf_path=params.tf_dir, **train_few_shot_params)
elif params.method == 'gnnnet':
model = GnnNet( model_dict[params.model], tf_path=params.tf_dir, **train_few_shot_params)
elif params.method == 'matchingnet':
model = MatchingNet( model_dict[params.model], tf_path=params.tf_dir, **train_few_shot_params)
elif params.method in ['relationnet', 'relationnet_softmax']:
if params.model == 'Conv4':
feature_model = backbone.Conv4NP
elif params.model == 'Conv6':
feature_model = backbone.Conv6NP
else:
feature_model = model_dict[params.model]
loss_type = 'mse' if params.method == 'relationnet' else 'softmax'
model = RelationNet( feature_model, loss_type = loss_type, tf_path=params.tf_dir, **train_few_shot_params)
else:
raise ValueError('Unknown method')
model = model.cuda()
# load model
start_epoch = params.start_epoch
stop_epoch = params.stop_epoch
if params.resume != '':
resume_file = get_resume_file('%s/checkpoints/%s'%(params.save_dir, params.resume), params.resume_epoch)
if resume_file is not None:
tmp = torch.load(resume_file)
start_epoch = tmp['epoch']+1
model.load_state_dict(tmp['state'])
print(' resume the training with at {} epoch (model file {})'.format(start_epoch, params.resume))
elif 'baseline' not in params.method:
if params.warmup == 'gg3b0':
raise Exception('Must provide the pre-trained feature encoder file using --warmup option!')
state = load_warmup_state('%s/checkpoints/%s'%(params.save_dir, params.warmup), params.method)
model.feature.load_state_dict(state, strict=False)
# training
print('\n--- start the training ---')
model = train(base_loader, val_loader, model, start_epoch, stop_epoch, params)