-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRealHNS.py
912 lines (764 loc) · 65.2 KB
/
RealHNS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
import os
import time
import torch
import argparse
import ipdb
import math
from model import SASRec_V2_Adaptive
# from model import SASRec_V1
import pretty_errors
from model import EarlyStopping_onetower
from torch.nn.utils.rnn import pad_sequence
from kmeans_pytorch import kmeans
from utils import *
import os
import io
import copy
from matplotlib.pyplot import MultipleLocator
import matplotlib.pyplot as plt
plt.switch_backend('agg')
# -*- coding: UTF-8 -*-
np.set_printoptions(suppress=True)
np.set_printoptions(threshold=2000)
from matplotlib.font_manager import FontManager
fm = FontManager()
mat_fonts = set(f.name for f in fm.ttflist)
print(mat_fonts)
def str2bool(s):
if s not in {'false', 'true'}:
raise ValueError('Not a valid boolean string')
return s == 'true'
# load weights
def get_updateModel(model, path_source, path_target):
# # load the model
# pretrained_dict_source = torch.load(path_source, map_location='cpu') # 58
# pretrained_dict_target = torch.load(path_target, map_location='cpu') # 58
# model_dict = model.state_dict() # 58
# shared_dict_source = {k: v for k, v in pretrained_dict_source.items() if k.startswith('sasrec_embedding_source')}
# shared_dict_target = {k: v for k, v in pretrained_dict_target.items() if k.startswith('sasrec_embedding_target')}
# model_dict.update(shared_dict_source)
# model_dict.update(shared_dict_target)
# model.load_state_dict(model_dict)
# ipdb.set_trace()
pretrained_dict_source = torch.load(path_source, map_location='cpu') # 68
pretrained_dict_target = torch.load(path_target, map_location='cpu') # 68
model_dict = model.state_dict() # 68
shared_dict_source = {k: v for k, v in pretrained_dict_source.items() if k.startswith('sasrec_embedding_source')}# 28
shared_dict_target = {k: v for k, v in pretrained_dict_target.items() if k.startswith('sasrec_embedding_target')}# 28
model_dict.update(shared_dict_source)
model_dict.update(shared_dict_target)
print("Load the length of source is:", len(shared_dict_source.keys()))
print("Load the length of target is:", len(shared_dict_target.keys()))
model.load_state_dict(model_dict)
return model
def del_tensor_ele(arr,index):
arr1 = arr[0:index]
arr2 = arr[index+1:]
return torch.cat((arr1,arr2),dim=0)
def get_curriculum_DNS_num(epoch, curriculum_start_epoch, DNS_num, source_DNS_num, curriculum_range, curriculum_multiple, curriculum_ratio, average_score_item, curriculum_start_ratio):
if args.SD_first == 0:
if epoch <= curriculum_start_epoch:
curriculum_DNS_num = 0
curriculum_source_DNS_num = 0
curriculum_distance = 0
elif epoch > curriculum_start_epoch:
curriculum_DNS_all_num = min(math.ceil((epoch-curriculum_start_epoch)/curriculum_range)*curriculum_multiple, (DNS_num+source_DNS_num))
curriculum_DNS_num = math.ceil(curriculum_DNS_all_num*DNS_num/(DNS_num+source_DNS_num))
curriculum_source_DNS_num = curriculum_DNS_all_num - curriculum_DNS_num
curriculum_distance = min((average_score_item/curriculum_start_ratio) * pow(curriculum_ratio, math.ceil((epoch-curriculum_start_epoch)/curriculum_range)), average_score_item)
elif args.SD_first == 1:
if epoch <= curriculum_start_epoch:
curriculum_DNS_num = 0
curriculum_source_DNS_num = 0
curriculum_distance = 0
elif epoch > curriculum_start_epoch:
curriculum_DNS_all_num = min(math.ceil((epoch-curriculum_start_epoch)/curriculum_range)*curriculum_multiple, (DNS_num+source_DNS_num))
curriculum_DNS_num = min(curriculum_DNS_all_num, DNS_num)
curriculum_source_DNS_num = curriculum_DNS_all_num - curriculum_DNS_num
curriculum_distance = min((average_score_item/curriculum_start_ratio) * pow(curriculum_ratio, math.ceil((epoch-curriculum_start_epoch)/curriculum_range)), average_score_item)
print("In epoch {}, the curriculum_DNS_num is {}, the curriculum_source_DNS_num is {}, the curriculum_distance is {}".format(epoch, curriculum_DNS_num, curriculum_source_DNS_num, curriculum_distance))
return curriculum_DNS_num, curriculum_source_DNS_num, curriculum_distance
def get_exclusive(t1, t2):
t1_exclusive = t1[(t1.view(1, -1) != t2.view(-1, 1)).all(dim=0)]
return t1_exclusive
def calculate_distance(feat1,feat2,args):
if args.distance_function == 'l2_distance':
# final_distance = torch.dist(feat1, feat2, p=2) #
final_distance = pdist_l2(feat1, feat2) # torch.Size([1015])----[pos_target]
elif args.distance_function == 'hadamard_product':
final_distance = (feat1*feat2).sum(dim=-1) * args.temperature #
return final_distance
def generate_user_sample(usernum,user_train_target):
cold_user_list = {}
max_len = 0
# ipdb.set_trace()
for k,v in user_train_target.items():
max_len = max(max_len,len(v))
for i in range(0,max_len+1):
cold_user_list.update({i:[]})
for k,v in user_train_target.items():
item_list = cold_user_list[len(v)]
item_list.append(k)
cold_user_list.update({len(v):item_list})
# ipdb.set_trace()
return cold_user_list
def generate_user_sample_cluster(epoch, user_list, cluster_id_for_user_index_dict, source_finaldim_embedding, target_finaldim_embedding, cluster_id_for_finaldim_embedding, outlier_weight):
cluster_user_dict = {}
number = 0
cluster_user_list = []
for i in range(0, args.num_user_clusters):
user_id = torch.tensor(np.array(cluster_id_for_user_index_dict[i]), device='cuda')
finaldim_embedding_target = torch.index_select(target_finaldim_embedding, dim=0, index=user_id) # torch.Size([288, 64])----[pos_targets, hidden_unit]
score_target = calculate_distance(finaldim_embedding_target.cpu(), cluster_id_for_finaldim_embedding[0].cpu().unsqueeze(0).expand(finaldim_embedding_target.shape), args)
sort_target_for_indices = torch.sort(input=score_target, dim=0, descending=False, stable=True)[1] # torch.Size([4966])
sort_target_for_values = torch.sort(input=score_target, dim=0, descending=False, stable=True)[0] # torch.Size([4966])
sort_target_ids_choose_list = np.array(sort_target_for_indices[:(int(len(user_id)*outlier_weight))]).tolist()
user_target_ids_choose_list = np.array(torch.tensor(user_list)[user_id[sort_target_ids_choose_list].cpu()]).tolist()
cluster_user_list.extend(user_target_ids_choose_list)
number = number + len(user_target_ids_choose_list)
cluster_user_dict.update({outlier_weight:cluster_user_list})
print("The sampled user number of weight {} in epoch {} in {} dataset is {}:".format(outlier_weight, epoch, args.dataset, number))
with io.open(result_path+'/log_file_cluster.txt', 'a', encoding='utf-8') as file:
file.write("The sampled user number of weight {} in epoch {} in {} is {}\n:".format(outlier_weight, epoch, args.dataset, number))
# ipdb.set_trace()
with open(file_result_path+'/cluster_user_dict_'+str(args.dataset)+'_epoch'+str(epoch)+'.pkl', 'wb') as f:
pkl.dump(cluster_user_dict, f)
with open(file_result_path+'/cluster_id_for_user_index_dict_'+str(args.dataset)+'_epoch'+str(epoch)+'.pkl', 'wb') as f:
pkl.dump(cluster_id_for_user_index_dict, f)
torch.save(user_list, file_result_path+'user_list_epoch'+str(args.epoch)+'.pt')
torch.save(source_finaldim_embedding, file_result_path+'source_finaldim_embedding_epoch'+str(args.epoch)+'.pt')
torch.save(target_finaldim_embedding, file_result_path+'target_finaldim_embedding_epoch'+str(args.epoch)+'.pt')
torch.save(cluster_id_for_finaldim_embedding, file_result_path+'cluster_id_for_finaldim_embedding_epoch'+str(args.epoch)+'.pt')
return torch.tensor(cluster_user_list, device='cuda')
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', required=True)
parser.add_argument('--cross_dataset', default='Toy_Game')
parser.add_argument('--batch_size', default=128, type=int)
parser.add_argument('--lr', default=0.0005, type=float)
parser.add_argument('--maxlen', default=200, type=int)
parser.add_argument('--hidden_units', default=64, type=int)
parser.add_argument('--num_blocks', default=2, type=int)
parser.add_argument('--num_epochs', default=1000, type=int)
parser.add_argument('--num_heads', default=1, type=int)
parser.add_argument('--dropout_rate', default=0.2, type=float)
parser.add_argument('--l2_emb', default=0.0, type=float)
parser.add_argument('--device', default='cuda', type=str)
parser.add_argument('--inference_only', default=False, type=str2bool)
parser.add_argument('--state_dict_path', default=None, type=str)
parser.add_argument('--num_samples', default=100, type=int)
parser.add_argument('--decay', default=4, type=int)
parser.add_argument('--lr_decay_rate', default=0.99, type=float)
parser.add_argument('--index', default=0, type=int)
parser.add_argument('--version', default='SASRec_V13', type=str)
parser.add_argument('--lr_linear', default=0.01, type=float)
parser.add_argument('--start_decay_linear', default=8, type=int)
parser.add_argument('--temperature', default=5, type=float)
parser.add_argument('--seed', default=3, type=int)
parser.add_argument('--lrscheduler', default='ExponentialLR', type=str)
parser.add_argument('--patience', default=10, type=int)
parser.add_argument('--sample_ratio', default=20, type=int)
parser.add_argument('--negative_sample', default='DNS', type=str)
parser.add_argument('--PNS_num', default=0, type=int)
parser.add_argument('--DNS_num', default=8, type=int)
parser.add_argument('--candidate_num', default=100, type=int)
parser.add_argument('--random_range_min', default=0, type=int)
parser.add_argument('--random_range_max', default=100, type=int)
parser.add_argument('--nearest_num', default=1000, type=int)
parser.add_argument('--candidate_min', default=0, type=int)
parser.add_argument('--candidate_max', default=1000, type=int)
parser.add_argument('--curriculum_start_epoch', default=5, type=int)
parser.add_argument('--curriculum_range', default=2, type=int)
parser.add_argument('--curriculum_multiple', default=1, type=int)
parser.add_argument('--curriculum_ratio', default=1.15, type=float)
parser.add_argument('--curriculum_start_ratio', default=5, type=int)
parser.add_argument('--importance_weight', default=1, type=float)
parser.add_argument('--candidate_min_percentage_user', default=0, type=int)
parser.add_argument('--candidate_max_percentage_user', default=10, type=int)
parser.add_argument('--item_distance_percentage', default=10, type=int)
parser.add_argument('--user_item_distance_percentage', default=10, type=int)
parser.add_argument('--candidate_min_percentage_source', default=0, type=int)
parser.add_argument('--candidate_max_percentage_source', default=30, type=int)
parser.add_argument('--source_DNS_num', default=2, type=int)
parser.add_argument('--random_range_min_source', default=0, type=int)
parser.add_argument('--random_range_max_source', default=100, type=int)
parser.add_argument('--num_user_clusters', default=20, type=int)
parser.add_argument('--distance_function', default='hadamard_product', type=str)
parser.add_argument('--source_weight', default=1.0, type=float)
parser.add_argument('--similar_for_big', default='True', type=str)
parser.add_argument('--result_path', default='None', type=str)
parser.add_argument('--epoch', default=0, type=int)
parser.add_argument('--interval', default=0, type=int)
parser.add_argument('--num_clusters', default=100, type=int)
parser.add_argument('--SD_first', default=1, type=int)
parser.add_argument('--outlier_weight', default=0.005, type=float)
args = parser.parse_args()
SEED = args.seed
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed_all(SEED)
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = False
result_path = './results_mk/' + str(args.cross_dataset) + '_100samples/RealHNS/' + str(args.dataset) + '/' + str(args.index) + 'th_seed' + str(args.seed) + '_lr' + str(args.lr) + '_NSas' + str(args.negative_sample) + '_sampleratio' + str(args.sample_ratio) + '_random_range_min' + str(args.random_range_min) + '_random_range_max' + str(args.random_range_max) + '_patience' + str(args.patience) + '/'
print("Save in path:", result_path)
file_result_path = result_path+'save_file/'
if not os.path.isdir(result_path):
os.makedirs(result_path)
if not os.path.isdir(file_result_path):
os.makedirs(file_result_path)
with open(os.path.join(result_path, 'args.txt'), 'w') as f:
f.write('\n'.join([str(k) + ',' + str(v) for k, v in sorted(vars(args).items(), key=lambda x: x[0])]))
# f.close()
args.result_path = result_path
if args.cross_dataset == 'Book_Movie':
source_name = 'book'
target_name = 'movie'
elif args.cross_dataset == 'Toy_Game':
source_name = 'toy'
target_name = 'game'
if __name__ == '__main__':
# global dataset
# ipdb.set_trace()
# print(os.getcwd())
dataset = data_partition(args.version, args.dataset, args.cross_dataset, args.maxlen)
# [user_train_source, user_train_target, user_valid_target, user_test_target, usernum, itemnum, interval] = dataset
[user_train_mix, user_train_source, user_train_target, user_valid_target, user_test_target, user_train_mix_sequence_for_target, user_train_source_sequence_for_target, usernum, itemnum, interval] = dataset
# [user_train_source, user_train_target, user_valid_source, user_valid_target, user_test_source, user_test_target, usernum, itemnum, interval] = dataset
# num_batch = len(user_train_source) // args.batch_size # 908
cc_source = 0.0
cc_target = 0.0
for u in user_train_source:
cc_source = cc_source + len(user_train_source[u])
cc_target = cc_target + len(user_train_target[u])
print('average sequence length in source domain: %.2f' % (cc_source / len(user_train_source)))
print('average sequence length in target domain: %.2f' % (cc_target / len(user_train_source)))
print('average sequence length in both domain: %.2f' % ((cc_source + cc_target) / len(user_train_source)))
user_list = []
for u_i in range(1, usernum):
if len(user_train_source[u_i]) >= 1 and len(user_train_target[u_i]) >= 2:
user_list.append(u_i)
# user_list = np.arange(1, usernum + 1)
np.random.shuffle(user_list)
# user_list = np.arange(1, usernum)
num_batch = math.ceil(len(user_list) / args.batch_size) # 908
sampler = WarpSampler_NS_final(args.version, args.dataset, args.cross_dataset, interval, user_train_mix, user_train_source, user_train_target, user_train_mix_sequence_for_target, user_train_source_sequence_for_target, user_list, itemnum, None, None, args.sample_ratio, None, None, None, args, num_batch*args.batch_size, batch_size=args.batch_size, maxlen=args.maxlen, n_workers=1)
model = SASRec_V2_Adaptive(usernum, itemnum, args).to(args.device)
for name, param in model.named_parameters():
try:
torch.nn.init.xavier_normal_(param.data)
except:
pass # just ignore those failed init layers
if args.cross_dataset == 'Toy_Game':
toy_model_path = './Checkpoint/checkpoint_toy.pt'
game_model_path = './Checkpoint/checkpoint_game.pt'
get_updateModel(model, toy_model_path, game_model_path)
bce_criterion = torch.nn.BCEWithLogitsLoss() # torch.nn.BCELoss()
adam_optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, betas=(0.9, 0.98))
pdist_l2 = torch.nn.PairwiseDistance(p=2)
# set the early stop
early_stopping = EarlyStopping_onetower(args.patience, version='SASRec_V3', verbose=True) # 关于 EarlyStopping 的代码可先看博客后面的内容
# set the learning rate scheduler
if args.lrscheduler == 'Steplr': #
learningrate_scheduler = torch.optim.lr_scheduler.StepLR(adam_optimizer, step_size=args.decay, gamma=args.lr_decay_rate, verbose=True)
elif args.lrscheduler == 'ExponentialLR': #
learningrate_scheduler = torch.optim.lr_scheduler.ExponentialLR(adam_optimizer, gamma=args.lr_decay_rate, last_epoch=-1, verbose=True)
elif args.lrscheduler == 'CosineAnnealingLR':
learningrate_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(adam_optimizer, T_max=args.num_epochs, eta_min=0, last_epoch=-1, verbose=True)
T = 0.0
t0 = time.time()
# ipdb.set_trace()
epoch_list = []
lr_list = []
loss_train_list = []
loss_test_list = []
ndcg_list = []
hr_list = []
auc_list = []
model_score_pos = []
model_score_neg = []
model_indice_number = []
if args.dataset=='amazon_toy' or args.dataset=='amazon_book':
item_number = interval
candidate_min_user = math.floor(interval * args.candidate_min_percentage_user / 100)
candidate_max_user = math.ceil(interval * args.candidate_max_percentage_user / 100)
candidate_min_source = math.floor(interval * args.candidate_min_percentage_source / 100)
candidate_max_source = math.ceil(interval * args.candidate_max_percentage_source / 100)
elif args.dataset=='amazon_game' or args.dataset=='amazon_movie':
item_number = itemnum-interval
candidate_min_user = math.floor((itemnum-interval) * args.candidate_min_percentage_user / 100)
candidate_max_user = math.ceil((itemnum-interval) * args.candidate_max_percentage_user / 100)
candidate_min_source = math.floor((itemnum-interval) * args.candidate_min_percentage_source / 100)
candidate_max_source = math.ceil((itemnum-interval) * args.candidate_max_percentage_source / 100)
print("The item_number is:",item_number)
print("The candidate_min_user is:",candidate_min_user)
print("The candidate_max_user is:",candidate_max_user)
print("The candidate_min_source is:",candidate_min_source)
print("The candidate_max_source is:",candidate_max_source)
# cold_user_list = generate_user_sample(usernum,user_train_target)
for epoch in range(1, args.num_epochs + 1):
args.epoch = epoch
with_pretrain_score_sum = []
with_train_score_sum = []
with_train_score_num = []
sample_pretrain_score_sum = []
sample_train_score_sum = []
model_score_pos_sum = []
model_score_neg_DNS_sum = []
model_score_neg_DNS_source_sum = []
model_score_neg_RNS_sum = []
pos_order_in_candidate = []
pos_order_in_range = []
pos_order_in_sample = []
raw_DNS_num = []
raw_DNS_source_num = []
raw_outlier_source_num = []
raw_outlier_positive_num = []
distance_user_rep_with_item_rep = []
distance_user_rep_with_source_rep = []
distance_random_user_rep = []
distance_final_user_with_pos_target = []
distance_source_user_with_pos_target = []
distance_final_user_with_source_user = []
distance_neg_target_candidate_with_pos_target = []
distance_neg_source_candidate_with_pos_target = []
# ipdb.set_trace()
model.eval()
with torch.no_grad():
tt0 = time.time()
print("Start calculate the user-based similarity...")
user_nearest_item_raw = torch.zeros([usernum+1, candidate_max_user-candidate_min_user], dtype=torch.int32, device='cuda') # torch.Size([7997, 4961])
user_nearest_item_score_raw = torch.zeros([usernum+1, candidate_max_user-candidate_min_user], dtype=torch.float32, device='cuda') # torch.Size([7997, 4961])
# for the source cluster
source_finaldim_embedding = torch.zeros(size = [0, args.hidden_units], dtype=torch.float32, device='cuda')
target_finaldim_embedding = torch.zeros(size = [0, args.hidden_units], dtype=torch.float32, device='cuda')
if args.dataset=='amazon_toy' or args.dataset=='amazon_book' or args.dataset=='douban_movie':
item_list = torch.arange(start=1,end=interval+1, step=1, device='cuda', requires_grad=False) # torch.Size([37868])
item_list_embedding = model.sasrec_embedding_source.item_emb(item_list).cpu() # torch.Size([37868, 64])
item_list_embedding = torch.nn.functional.normalize(item_list_embedding, p=2, dim=-1)
elif args.dataset=='amazon_game' or args.dataset=='amazon_movie' or args.dataset=='douban_music':
item_list = torch.arange(start=interval+1, end=itemnum+1, step=1, device='cuda', requires_grad=False) # torch.Size([11735])
item_list_embedding = model.sasrec_embedding_target.item_emb(item_list).cpu() # torch.Size([11735, 64])
item_list_embedding = torch.nn.functional.normalize(item_list_embedding, p=2, dim=-1)
seq_source_dict = {}
seq_target_dict = {}
user_train_source_sequence_for_target_indices_dict = {}
for u in user_list:
# for the movie domain
seq_source = torch.zeros([1,args.maxlen], dtype=torch.int32, device='cuda') # torch.Size([1, 200])
seq_target = torch.zeros([1,args.maxlen], dtype=torch.int32, device='cuda') # torch.Size([1, 200])
user_train_source_sequence_for_target_indices = torch.zeros([1,args.maxlen], dtype=torch.int32, device='cuda') # torch.Size([1, 200])
idx_source = args.maxlen - 1 #49
idx_target = args.maxlen - 1 #49
for i in reversed(range(0, len(user_train_source[u]))): # reversed是逆序搜索,这里的i指的是交互的物品
seq_source[0,idx_source] = user_train_source[u][i]
# 为什么要设定不等于0?是为了保证当序列长度没到达maxlen时,正样本序列会补充为0,那么构成的负样本序列也应该是0
idx_source -= 1
if idx_source == -1: break
for i in reversed(range(0, len(user_train_target[u][:-1]))): # reversed是逆序搜索,这里的i指的是交互的物品
seq_target[0,idx_target] = user_train_target[u][i]
if user_train_source_sequence_for_target[u][i] < -args.maxlen or user_train_source_sequence_for_target[u][i] == -len(user_train_source[u])-1:
user_train_source_sequence_for_target_indices[0,idx_target] = 0
else:
user_train_source_sequence_for_target_indices[0,idx_target] = user_train_source_sequence_for_target[u][i] + args.maxlen
idx_target -= 1
if idx_target == -1: break
seq_source_dict.update({u:seq_source})
seq_target_dict.update({u:seq_target})
user_train_source_sequence_for_target_indices_dict.update({u:user_train_source_sequence_for_target_indices})
scores, source_log_feats_l2norm, target_log_feats_l2norm = model.calculate_score_withembedding(seq_source, seq_target, user_train_source_sequence_for_target_indices, item_list)
source_finaldim_embedding = torch.cat([source_finaldim_embedding, source_log_feats_l2norm], dim=0)
target_finaldim_embedding = torch.cat([target_finaldim_embedding, target_log_feats_l2norm], dim=0)
sort_indices = torch.sort(input=scores, dim=0, descending=True, stable=True)[1][candidate_min_user:candidate_max_user+len(user_train_target[u])+2] # torch.Size([4966])
sort_values = torch.sort(input=scores, dim=0, descending=True, stable=True)[0][candidate_min_user:candidate_max_user+len(user_train_target[u])+2] # torch.Size([4966])
user_indices = item_list[sort_indices] # torch.Size([1001])
user_indices_score = copy.deepcopy(sort_values)
for it in (user_train_target[u]+user_valid_target[u]+user_test_target[u]):
if it in user_indices:
user_equal_it_index = torch.nonzero(user_indices == it).squeeze(1)
user_indices = del_tensor_ele(user_indices, user_equal_it_index)
user_indices_score = del_tensor_ele(user_indices_score, user_equal_it_index)
user_nearest_item_raw[u] = user_indices[:candidate_max_user-candidate_min_user]
user_nearest_item_score_raw[u] = user_indices_score[:candidate_max_user-candidate_min_user]
del seq_source
del seq_target
del user_train_source_sequence_for_target_indices
del scores
tt1 = time.time()
# ipdb.set_trace()
random_index = torch.randperm(user_nearest_item_raw.shape[1])
user_nearest_item = copy.deepcopy(user_nearest_item_raw[:, random_index[:args.nearest_num]])
user_nearest_item_score = copy.deepcopy(user_nearest_item_score_raw[:, random_index[:args.nearest_num]])
del user_nearest_item_raw
del user_nearest_item_score_raw
torch.cuda.empty_cache()
print("End calculate the user-based similirity, time cost is {:.4f}s:".format(tt1 - tt0)) # 18.1574s
score_nonzero_num = len(torch.where(user_nearest_item>0)[0])
score_nonzero_sum = torch.sum(user_nearest_item_score).item()
print("The mean value of pretrain nearest item score in epoch {} is {:.4f}\n".format(epoch, score_nonzero_sum / score_nonzero_num))
with io.open(result_path + 'mean_score.txt', 'a', encoding='utf-8') as file:
file.write("The mean value of pretrain nearest item score in epoch {} is {:.4f}\n".format(epoch, score_nonzero_sum / score_nonzero_num))
# ipdb.set_trace()
print("The cluster user number is:",len(user_list))
cluster_ids, cluster_centers = kmeans(X=item_list_embedding, num_clusters=args.num_clusters, distance='cosine', tqdm_flag=False, device='cuda')
cluster_for_item_index_dict = {}
cluster_for_item_dict = {}
item_index_for_cluster = -torch.ones(size = item_list.shape, dtype=torch.int32, device='cuda')
item_for_cluster = -torch.ones(size = [itemnum + 1], dtype=torch.int32, device='cuda')
# distance_item_all = torch.empty(size=[0], dtype=torch.float32, device='cuda')
for i in range(0, args.num_clusters):
cluster_for_item_index_dict.update({i:[]})
cluster_for_item_dict.update({i:[]})
# the relation of cluster_id and user_index
for i in range(0, len(item_list)):
cluster_for_item_index_raw = cluster_for_item_index_dict[cluster_ids[i].item()]
cluster_for_item_index_raw.append(i)
cluster_for_item_index_dict.update({cluster_ids[i].item():cluster_for_item_index_raw})
cluster_for_item_raw = cluster_for_item_dict[cluster_ids[i].item()]
cluster_for_item_raw.append(item_list[i].item())
cluster_for_item_dict.update({cluster_ids[i].item():cluster_for_item_raw})
# the relation of user_id and
for i in range(0, len(item_list)):
item_index_for_cluster[i] = cluster_ids[i].item()
item_for_cluster[item_list[i]] = cluster_ids[i].item()
distance_cluster_all = []
for i in range(0, args.num_clusters):
item_center_distance = calculate_distance(torch.index_select(item_list_embedding, dim=0, index=torch.tensor(cluster_for_item_index_dict[i])), cluster_centers[i].unsqueeze(0).expand(len(cluster_for_item_index_dict[i]), -1), args) # torch.Size([1433])
# distance_item_all = torch.cat([distance_item_all, item_center_distance.cuda()],dim=0)
distance_cluster_all.append(torch.mean(item_center_distance).item())
# average_score_item = torch.mean(distance_item_all)
average_score_item = np.mean(distance_cluster_all)
user_cluster_id_for_user_index_dict = {}
user_id_for_user_cluster_id = -torch.ones(size = [usernum + 1, 1], dtype=torch.int32, device='cuda')
user_cluster_id_for_finaldim_embedding = torch.zeros(size = [0, args.hidden_units], dtype=torch.float32, device='cuda')
user_cluster_ids, user_cluster_centers = kmeans(X=source_finaldim_embedding, num_clusters=args.num_user_clusters, distance='cosine', tqdm_flag=False, device='cuda')
for i in range(0, args.num_user_clusters):
user_cluster_id_for_user_index_dict.update({i:[]})
# the relation of cluster_id and user_index
for i in range(0, len(user_list)):
user_cluster_id_for_user_index_raw = user_cluster_id_for_user_index_dict[user_cluster_ids[i].item()]
user_cluster_id_for_user_index_raw.append(i)
user_cluster_id_for_user_index_dict.update({user_cluster_ids[i].item():user_cluster_id_for_user_index_raw})
# the relation of user_id and
for i in range(0, len(user_list)):
user_id_for_user_cluster_id[user_list[i]] = user_cluster_ids[i].item()
# ipdb.set_trace()
for i in range(0, args.num_user_clusters):
user_cluster_id_for_user_index_raw = torch.tensor(np.array(user_cluster_id_for_user_index_dict[i]), device='cuda')
finaldim_embedding_target = torch.index_select(target_finaldim_embedding, dim=0, index=user_cluster_id_for_user_index_raw) # torch.Size([242, 64])----[pos_targets, hidden_unit]
finaldim_embedding_target_mean = torch.mean(finaldim_embedding_target, dim=0)
user_cluster_id_for_finaldim_embedding = torch.cat([user_cluster_id_for_finaldim_embedding, finaldim_embedding_target_mean.unsqueeze(0)], dim=0)
if len(torch.index_select(user_cluster_ids.cuda(), dim=0, index=user_cluster_id_for_user_index_raw).unique()) != 1:
ipdb.set_trace()
# generate_user_sample_cluster(epoch, user_list, user_cluster_id_for_user_index_dict, source_finaldim_embedding, target_finaldim_embedding, user_cluster_id_for_finaldim_embedding)
outlier_user_tensor = generate_user_sample_cluster(epoch, user_list, user_cluster_id_for_user_index_dict, source_finaldim_embedding, target_finaldim_embedding, user_cluster_id_for_finaldim_embedding, args.outlier_weight)
print("Start calculate the source-based similarity...")
# ipdb.set_trace()
tt2 = time.time()
user_nearest_source_raw = torch.zeros([usernum+1, candidate_max_source-candidate_min_source], dtype=torch.int32, device='cuda') # torch.Size([7997, 3787])
user_nearest_source_score_raw = torch.zeros([usernum+1, candidate_max_source-candidate_min_source], dtype=torch.float32, device='cuda') # torch.Size([7997, 3787])
for u in user_list:
# ipdb.set_trace()
scores = model.calculate_score_source(u, seq_source_dict[u], user_train_source_sequence_for_target_indices_dict[u], item_list, user_id_for_user_cluster_id, user_cluster_id_for_finaldim_embedding)
sort_source_indices = torch.sort(input=scores, dim=0, descending=True, stable=True)[1][candidate_min_source:candidate_max_source+len(user_train_target[u])+2] # torch.Size([4966])
sort_source_values = torch.sort(input=scores, dim=0, descending=True, stable=True)[0][candidate_min_source:candidate_max_source+len(user_train_target[u])+2] # torch.Size([4966])
user_source_indices = item_list[sort_source_indices] # torch.Size([1001])
user_source_indices_score = copy.deepcopy(sort_source_values)
for it in (user_train_target[u]+user_valid_target[u]+user_test_target[u]):
if it in user_source_indices:
user_equal_it_index_source = torch.nonzero(user_source_indices == it).squeeze(1)
user_source_indices = del_tensor_ele(user_source_indices, user_equal_it_index_source)
user_source_indices_score = del_tensor_ele(user_source_indices_score, user_equal_it_index_source)
user_nearest_source_raw[u] = user_source_indices[:candidate_max_source-candidate_min_source]
user_nearest_source_score_raw[u] = user_source_indices_score[:candidate_max_source-candidate_min_source]
del scores
tt3 = time.time()
print("End calculate the user-based similirity, time cost is {:.4f}s:".format(tt3 - tt2)) # 18.1574s
random_index_source = torch.randperm(user_nearest_source_raw.shape[1])
user_nearest_source = copy.deepcopy(user_nearest_source_raw[:, random_index_source[:args.nearest_num]])
user_nearest_source_score = copy.deepcopy(user_nearest_source_score_raw[:, random_index_source[:args.nearest_num]])
del seq_source_dict
del seq_target_dict
del user_train_source_sequence_for_target_indices_dict
del user_nearest_source_raw
del user_nearest_source_score_raw
del source_finaldim_embedding
del target_finaldim_embedding
torch.cuda.empty_cache()
source_score_nonzero_num = len(torch.where(user_nearest_source>0)[0])
source_score_nonzero_sum = torch.sum(user_nearest_source_score).item()
print("The mean value of pretrain nearest source score in epoch {} is {:.4f}\n".format(epoch, source_score_nonzero_sum / source_score_nonzero_num))
with io.open(result_path + 'mean_score.txt', 'a', encoding='utf-8') as file:
file.write("The mean value of pretrain nearest source score in epoch {} is {:.4f}\n".format(epoch, source_score_nonzero_sum / source_score_nonzero_num))
# ipdb.set_trace()
curriculum_DNS_num, curriculum_source_DNS_num, curriculum_score = get_curriculum_DNS_num(epoch, args.curriculum_start_epoch, args.DNS_num, args.source_DNS_num, args.curriculum_range, args.curriculum_multiple, args.curriculum_ratio, average_score_item, args.curriculum_start_ratio)
epoch_list.append(epoch)
lr_list.append(learningrate_scheduler.get_last_lr())
t1 = time.time()
loss_epoch = 0
model.train()
u_all_tensor = torch.tensor([], dtype=torch.int32)
# u_embedding_dict = {}
score_final_user_with_pos_target = []
score_neg_target_candidate_with_pos_target = []
score_random_user_rep = []
for step in range(num_batch): # tqdm(range(num_batch), total=num_batch, ncols=70, leave=False, unit='b'):
importance_weight_gt = 0
# u, seq_source, seq_target, pos_target, neg_target = sampler.next_batch() # tuples to ndarray
u, seq_mix, seq_source, seq_target, pos_target, neg_target, user_train_mix_sequence_for_target_indices, user_train_source_sequence_for_target_indices = sampler.next_batch() # tuples to ndarray
u, seq_source, seq_target, pos_target, neg_target, user_train_mix_sequence_for_target_indices, user_train_source_sequence_for_target_indices = np.array(u), np.array(seq_source), np.array(seq_target), np.array(pos_target), np.array(neg_target), np.array(user_train_mix_sequence_for_target_indices), np.array(user_train_source_sequence_for_target_indices)
u, seq_source, seq_target, pos_target, neg_target, user_train_mix_sequence_for_target_indices, user_train_source_sequence_for_target_indices = torch.tensor(u).cuda(), torch.tensor(seq_source).cuda(), torch.tensor(seq_target).cuda(), torch.tensor(pos_target).cuda(), torch.tensor(neg_target).cuda(), torch.tensor(user_train_mix_sequence_for_target_indices).cuda(), torch.tensor(user_train_source_sequence_for_target_indices).cuda()
if step ==0:
print("user:",u)
u_all_tensor = torch.cat((u_all_tensor,u.cpu()), 0)
neg_target_list = []
# ipdb.set_trace()
with torch.no_grad():
model.eval()
if args.dataset=='amazon_toy':
############################################ for single domain #######################################
# ipdb.set_trace()
final_user_embedding = model.calculate_embedding(seq_source, seq_target, user_train_source_sequence_for_target_indices)[torch.where(pos_target != 0)] # torch.Size([128, 200, 64])
pos_target_embedding = model.sasrec_embedding_source.item_emb(pos_target[torch.where(pos_target!=0)]) # torch.Size([1015, 64])----[pos_targets, embedding size]----pos target embedding
pos_target_embedding = torch.nn.functional.normalize(pos_target_embedding, p=2, dim=-1)
all_score = calculate_distance(final_user_embedding, pos_target_embedding, args) #
neg_target_candidate = torch.index_select(user_nearest_item, dim=0, index=u[torch.where(pos_target!=0)[0]]) # torch.Size([1015, 1000])----[pos_targets, nearest_num]----nearest item of each user
neg_target_candidate_embedding = model.sasrec_embedding_source.item_emb(neg_target_candidate)
neg_target_candidate_embedding = torch.nn.functional.normalize(neg_target_candidate_embedding, p=2, dim=-1)
############################################ for cross domain #######################################
# ipdb.set_trace()
# distance between final_user and source_user
final_source_embedding = model.calculate_source_embedding_cluster(u, seq_source, seq_target, user_train_source_sequence_for_target_indices, pos_target, user_id_for_user_cluster_id, user_cluster_id_for_finaldim_embedding)
all_score_source = calculate_distance(final_user_embedding, final_source_embedding, args)
# distance between source_user with pos_target
all_score_source_pos = calculate_distance(final_source_embedding, pos_target_embedding, args)
neg_source_candidate = torch.index_select(user_nearest_source, dim=0, index=u[torch.where(pos_target!=0)[0]]) # torch.Size([1015, 1000])----[pos_targets, nearest_num]----nearest item of each user
neg_source_candidate_embedding = model.sasrec_embedding_source.item_emb(neg_source_candidate)
neg_source_candidate_embedding = torch.nn.functional.normalize(neg_source_candidate_embedding, p=2, dim=-1)
# calculate the score
items_score = calculate_distance(neg_target_candidate_embedding, pos_target_embedding.unsqueeze(1).expand(-1, neg_target_candidate_embedding.shape[1], -1), args) # torch.Size([1433, 1000])
items_source_score = calculate_distance(neg_source_candidate_embedding, pos_target_embedding.unsqueeze(1).expand(-1, neg_source_candidate_embedding.shape[1], -1), args) # torch.Size([1433, 1000])
final_candidate = torch.where(items_score <= curriculum_score, neg_target_candidate, torch.zeros(size=neg_target_candidate.shape, dtype=torch.int32, device='cuda')) # Filter out items that are not close to the target item
final_candidate_source = torch.where(items_source_score <= curriculum_score, neg_source_candidate, torch.zeros(size=neg_source_candidate.shape, dtype=torch.int32, device='cuda')) # Filter out items that are not close to the target item
target_neg_embedding = model.sasrec_embedding_source.item_emb(final_candidate) # torch.Size([128, 100, 200, 64])
target_neg_embedding = torch.nn.functional.normalize(target_neg_embedding, p=2, dim=-1)
source_neg_embedding = model.sasrec_embedding_source.item_emb(final_candidate_source)
source_neg_embedding = torch.nn.functional.normalize(source_neg_embedding, p=2, dim=-1)
elif args.dataset=='amazon_game':
############################################ for single domain #######################################
final_user_embedding = model.calculate_embedding(seq_source, seq_target, user_train_source_sequence_for_target_indices)[torch.where(pos_target != 0)] # torch.Size([128, 200, 64])----[batch size, maxlen, embedding size]----final user embedding
pos_target_embedding = model.sasrec_embedding_target.item_emb(pos_target[torch.where(pos_target!=0)]) # torch.Size([1015, 64])----[pos_targets, embedding size]----pos target embedding
pos_target_embedding = torch.nn.functional.normalize(pos_target_embedding, p=2, dim=-1)
all_score = calculate_distance(final_user_embedding, pos_target_embedding, args) #
neg_target_candidate = torch.index_select(user_nearest_item, dim=0, index=u[torch.where(pos_target!=0)[0]]) # torch.Size([1015, 1000])----[pos_targets, nearest_num]----nearest item of each user
neg_target_candidate_embedding = model.sasrec_embedding_target.item_emb(neg_target_candidate)
neg_target_candidate_embedding = torch.nn.functional.normalize(neg_target_candidate_embedding, p=2, dim=-1)
############################################ for single domain #######################################
# ipdb.set_trace()
final_source_embedding = model.calculate_source_embedding_cluster(u, seq_source, seq_target, user_train_source_sequence_for_target_indices, pos_target, user_id_for_user_cluster_id, user_cluster_id_for_finaldim_embedding)
# distance between final_user and source_user
all_score_source = calculate_distance(final_user_embedding, final_source_embedding, args)
# distance between source_user with pos_target
all_score_source_pos = calculate_distance(final_source_embedding, pos_target_embedding, args) #
neg_source_candidate = torch.index_select(user_nearest_source, dim=0, index=u[torch.where(pos_target!=0)[0]]) # torch.Size([1015, 1000])----[pos_targets, nearest_num]----nearest item of each user
neg_source_candidate_embedding = model.sasrec_embedding_target.item_emb(neg_source_candidate)
neg_source_candidate_embedding = torch.nn.functional.normalize(neg_source_candidate_embedding, p=2, dim=-1)
items_score = calculate_distance(neg_target_candidate_embedding, pos_target_embedding.unsqueeze(1).expand(-1, neg_target_candidate_embedding.shape[1], -1), args) # torch.Size([1433, 1000])
items_source_score = calculate_distance(neg_source_candidate_embedding, pos_target_embedding.unsqueeze(1).expand(-1, neg_source_candidate_embedding.shape[1], -1), args) # torch.Size([1433, 1000])
final_candidate = torch.where(items_score <= curriculum_score, neg_target_candidate, torch.zeros(size=neg_target_candidate.shape, dtype=torch.int32, device='cuda')) # Filter out items that are not close to the target item
final_candidate_source = torch.where(items_source_score <= curriculum_score, neg_source_candidate, torch.zeros(size=neg_source_candidate.shape, dtype=torch.int32, device='cuda')) # Filter out items that are not close to the target item
target_neg_embedding = model.sasrec_embedding_target.item_emb(final_candidate) # torch.Size([128, 100, 200, 64])
target_neg_embedding = torch.nn.functional.normalize(target_neg_embedding, p=2, dim=-1)
source_neg_embedding = model.sasrec_embedding_target.item_emb(final_candidate_source)
source_neg_embedding = torch.nn.functional.normalize(source_neg_embedding, p=2, dim=-1)
random_score = calculate_distance(final_user_embedding[0], final_user_embedding[-1], args)
############################################ for single domain #######################################
scores = calculate_distance(final_user_embedding.unsqueeze(1).expand([-1, args.nearest_num, -1]), target_neg_embedding, args)
sample_indices = torch.sort(input=scores, dim=-1, descending=True, stable=True)[1][:, args.random_range_min: args.random_range_max] # torch.Size([128, 200, 200])
sample_indices_scores = torch.sort(input=scores, dim=-1, descending=True, stable=True)[0][:, args.random_range_min: args.random_range_max] # torch.Size([128, 200, 200])
random_indices = torch.randint(low=0, high=args.random_range_max-args.random_range_min, size=[scores.shape[0], curriculum_DNS_num+curriculum_source_DNS_num], device='cuda', requires_grad=False) # torch.Size([1015, 10])
sample_random_indices = torch.gather(input=sample_indices,dim=-1,index=random_indices) # torch.Size([128, 200, 2])
neg_target_DNS = torch.gather(input=final_candidate, dim=-1, index=sample_random_indices) # torch.Size([1015, 10])
neg_target_train_score_DNS = torch.gather(input=scores, dim=-1, index=sample_random_indices)
############################################# for cross domain #########################################
# ipdb.set_trace()
scores_source = calculate_distance(final_source_embedding.unsqueeze(1).expand([-1, args.nearest_num, -1]), source_neg_embedding, args) # torch.Size([128, 200, 1000])
sample_indices_source = torch.sort(input=scores_source, dim=-1, descending=True, stable=True)[1][:, args.random_range_min_source: args.random_range_max_source] # torch.Size([128, 200, 200])
sample_indices_scores_source = torch.sort(input=scores_source, dim=-1, descending=True, stable=True)[0][:, args.random_range_min_source: args.random_range_max_source] # torch.Size([128, 200, 200])
random_indices_source = torch.randint(low=0, high=args.random_range_max_source-args.random_range_min_source, size=[scores_source.shape[0], curriculum_source_DNS_num], device='cuda', requires_grad=False) # torch.Size([1015, 10])
sample_random_indices_source = torch.gather(input=sample_indices_source,dim=-1,index=random_indices_source) # torch.Size([128, 200, 2])
neg_target_DNS_source = torch.gather(input=final_candidate_source, dim=-1, index=sample_random_indices_source)
neg_target_train_score_DNS_source = torch.gather(input=scores_source, dim=-1, index=sample_random_indices_source)
distance_final_user_with_pos_target.append(all_score.mean().item())
distance_source_user_with_pos_target.append(all_score_source_pos.mean().item())
distance_final_user_with_source_user.append(all_score_source.mean().item())
distance_neg_target_candidate_with_pos_target.append(items_score.mean().item())
distance_neg_source_candidate_with_pos_target.append(items_source_score.mean().item())
distance_random_user_rep.append(random_score.item())
if args.dataset=='amazon_toy':
pos_order_in_candidate.append(len(torch.where(scores > (final_user_embedding * torch.nn.functional.normalize(model.sasrec_embedding_source.item_emb(pos_target[torch.where(pos_target != 0)]), p=2, dim=-1)).sum(dim=-1).unsqueeze(1).expand([-1,neg_target_candidate.shape[1]]))[0]) / len(torch.where(pos_target != 0)[0]))
pos_order_in_range.append(len(torch.where(sample_indices_scores > (final_user_embedding * torch.nn.functional.normalize(model.sasrec_embedding_source.item_emb(pos_target[torch.where(pos_target != 0)]), p=2, dim=-1)).sum(dim=-1).unsqueeze(1).expand([-1,args.random_range_max-args.random_range_min]))[0])/len(torch.where(pos_target!=0)[0]))
pos_order_in_sample.append(len(torch.where(neg_target_train_score_DNS > (final_user_embedding * torch.nn.functional.normalize(model.sasrec_embedding_source.item_emb(pos_target[torch.where(pos_target != 0)]), p=2, dim=-1)).sum(dim=-1).unsqueeze(1).expand([-1,curriculum_DNS_num+curriculum_source_DNS_num]))[0]) / len(torch.where(pos_target != 0)[0]))
elif args.dataset=='amazon_game':
pos_order_in_candidate.append(len(torch.where(scores > (final_user_embedding * torch.nn.functional.normalize(model.sasrec_embedding_target.item_emb(pos_target[torch.where(pos_target != 0)]), p=2, dim=-1)).sum(dim=-1).unsqueeze(1).expand([-1,neg_target_candidate.shape[1]]))[0]) / len(torch.where(pos_target != 0)[0]))
pos_order_in_range.append(len(torch.where(sample_indices_scores > (final_user_embedding * torch.nn.functional.normalize(model.sasrec_embedding_target.item_emb(pos_target[torch.where(pos_target != 0)]), p=2, dim=-1)).sum(dim=-1).unsqueeze(1).expand([-1,args.random_range_max-args.random_range_min]))[0])/len(torch.where(pos_target!=0)[0]))
pos_order_in_sample.append(len(torch.where(neg_target_train_score_DNS > (final_user_embedding * torch.nn.functional.normalize(model.sasrec_embedding_target.item_emb(pos_target[torch.where(pos_target != 0)]), p=2, dim=-1)).sum(dim=-1).unsqueeze(1).expand([-1,curriculum_DNS_num+curriculum_source_DNS_num]))[0]) / len(torch.where(pos_target != 0)[0]))
score_final_user_with_pos_target.append(all_score.mean().item())
score_neg_target_candidate_with_pos_target.append(items_score.mean().item())
score_random_user_rep.append(random_score.item())
del final_user_embedding
del final_source_embedding
del pos_target_embedding
del all_score
del all_score_source
del neg_target_candidate
del neg_source_candidate
del neg_target_candidate_embedding
del neg_source_candidate_embedding
del target_neg_embedding
del source_neg_embedding
del final_candidate
del final_candidate_source
del scores
del scores_source
# torch.cuda.empty_cache()
# ipdb.set_trace()
mask = torch.sum(u.unsqueeze(1) == outlier_user_tensor, dim=1).unsqueeze(1).expand(args.batch_size, args.maxlen)
if step == 0:
single_dns_num = 0
cross_dns_num = 0
rns_num = 0
outlier_num = 0
outlier_num = outlier_num + len(torch.where(mask>0)[0].unique())
if epoch > args.curriculum_start_epoch:
for k in range(0, args.sample_ratio):
if k < curriculum_DNS_num:
neg_DNS = torch.zeros(size=[args.batch_size, args.maxlen], dtype=torch.int32, device='cuda')
neg_DNS[torch.where(pos_target != 0)] = neg_target_DNS[:,k]
raw_DNS_num.append(len(torch.where(neg_DNS != 0)[0]))
neg_DNS = torch.where(neg_DNS != 0, neg_DNS, neg_target[:,k, :])
neg_target_list.append(neg_DNS)
if step == 0:
single_dns_num = single_dns_num + 1
elif k < curriculum_DNS_num+curriculum_source_DNS_num:
neg_DNS_single = torch.zeros(size=[args.batch_size, args.maxlen], dtype=torch.int32, device='cuda')
neg_DNS_cross = torch.zeros(size=[args.batch_size, args.maxlen], dtype=torch.int32, device='cuda')
neg_DNS_single[torch.where(pos_target != 0)] = neg_target_DNS[:,k]
neg_DNS_cross[torch.where(pos_target != 0)] = neg_target_DNS_source[:,k-curriculum_DNS_num]
neg_DNS = torch.where(mask == 1, neg_DNS_cross, neg_DNS_single)
raw_DNS_source_num.append(len(torch.where(neg_DNS != 0)[0]))
raw_outlier_source_num.append(len(torch.where(neg_DNS[torch.where(mask>0)[0].unique()]!= 0)[0]))
raw_outlier_positive_num.append(len(torch.where(pos_target[torch.where(mask>0)[0].unique()]!= 0)[0]))
neg_DNS = torch.where(neg_DNS != 0, neg_DNS, neg_target[:,k, :])
neg_target_list.append(neg_DNS)
if step == 0:
cross_dns_num = cross_dns_num + 1
else:
neg_target_list.append(neg_target[:,k,:])
if step == 0:
rns_num = rns_num + 1
else:
for k in range(0, args.sample_ratio):
neg_target_list.append(neg_target[:,k,:])
if step == 0:
rns_num = rns_num + 1
if step == 0:
with io.open(result_path + 'distance_record.txt', 'a', encoding='utf-8') as file:
file.write("Epoch {}:\n".format(epoch))
file.write(" The num of single-DNS samples is {}, the num of cross-DNS samples is {}, and the num of RNS samples is {:.4f}\n".format(single_dns_num, cross_dns_num, rns_num))
model.train()
pos_logits, neg_logits = model(u, seq_source, seq_target, pos_target, neg_target_list, user_train_source_sequence_for_target_indices)
pos_labels, neg_labels = torch.ones(pos_logits.shape, device=args.device), torch.zeros(pos_logits.shape, device=args.device)
adam_optimizer.zero_grad()
score_pos = torch.tensor(0.0)
indices = torch.where(pos_target != 0)
loss = bce_criterion(pos_logits[indices], pos_labels[indices])
score_pos = torch.sum(pos_logits[indices]).detach().cpu()
score_DNS = torch.tensor(0.0)
score_DNS_source = torch.tensor(0.0)
score_RNS = torch.tensor(0.0)
for k in range(0, args.sample_ratio):
if k < curriculum_DNS_num:
loss += bce_criterion(neg_logits[k][indices], neg_labels[indices]) / args.sample_ratio
score_DNS += torch.sum(neg_logits[k][indices]).detach().cpu() / curriculum_DNS_num
elif k < curriculum_DNS_num + curriculum_source_DNS_num:
loss += bce_criterion(neg_logits[k][indices], neg_labels[indices]) / args.sample_ratio
score_DNS_source += torch.sum(neg_logits[k][indices]).detach().cpu() / curriculum_source_DNS_num
else:
loss += bce_criterion(neg_logits[k][indices], neg_labels[indices]) / args.sample_ratio
score_RNS += torch.sum(neg_logits[k][indices]).detach().cpu() / (args.sample_ratio-curriculum_DNS_num)
model_score_pos_sum.append(score_pos.item())
model_score_neg_DNS_sum.append(score_DNS.item())
model_score_neg_DNS_source_sum.append(score_DNS_source.item())
model_score_neg_RNS_sum.append(score_RNS.item())
with_train_score_num.append(len(indices[0]))
if epoch == 1 and step == 0:
with io.open(result_path + 'test_performance.txt', 'a', encoding='utf-8') as file:
file.write('Init batch in epoch 1: pos_score is %.4f, neg_DNS_score is %.4f, neg_DNS_source_score is %.4f, neg_RNS_score is %.4f\n' % (sum(model_score_pos_sum) / sum(with_train_score_num), sum(model_score_neg_DNS_sum) / sum(with_train_score_num), sum(model_score_neg_DNS_source_sum) / sum(with_train_score_num), sum(model_score_neg_RNS_sum) / sum(with_train_score_num)))
loss_epoch += loss.item()
loss.backward()
adam_optimizer.step()
# ipdb.set_trace()
if curriculum_DNS_num == 0:
print("loss in epoch {} iteration {}: {}".format(epoch, step, loss.item()))
with io.open(result_path + 'loss_log.txt', 'a', encoding='utf-8') as file:
file.write("loss in epoch {} iteration {}: {}\n".format(epoch, step, loss.item()))
elif curriculum_source_DNS_num == 0:
print("In epoch {} iteration {}: loss is {}, SDNS_num is {}, Pos_num is {}.".format(epoch, step, loss.item(), raw_DNS_num[-1], with_train_score_num[-1]))
print(" SDNS_prob is {}".format(raw_DNS_num[-1]/with_train_score_num[-1]))
with io.open(result_path + 'loss_log.txt', 'a', encoding='utf-8') as file:
file.write("In epoch {} iteration {}: loss is {}, SDNS_num is {}, Pos_num is {}\n.".format(epoch, step, loss.item(), raw_DNS_num[-1], with_train_score_num[-1]))
file.write(". SDNS_prob is {}\n".format(raw_DNS_num[-1]/with_train_score_num[-1]))
else:
print("In epoch {} iteration {}: loss is {}, SDNS_num is {}, CDNS_num is {}, Pos_num is {}.".format(epoch, step, loss.item(), raw_DNS_num[-1], raw_DNS_source_num[-1], with_train_score_num[-1]))
print(" SDNS_prob is {}, CDNS_prob is {}.".format(raw_DNS_num[-1]/with_train_score_num[-1], raw_DNS_source_num[-1]/with_train_score_num[-1]))
with io.open(result_path + 'loss_log.txt', 'a', encoding='utf-8') as file:
file.write("In epoch {} iteration {}: loss is {}, SDNS_num is {}, CDNS_num is {}, Pos_num is {}.\n".format(epoch, step, loss.item(), raw_DNS_num[-1], raw_DNS_source_num[-1], with_train_score_num[-1]))
file.write(" SDNS_prob is {}, CDNS_prob is {}.\n".format(raw_DNS_num[-1]/with_train_score_num[-1], raw_DNS_source_num[-1]/with_train_score_num[-1]))
loss_train_list.append(loss_epoch / num_batch)
learningrate_scheduler.step()
t2 = time.time()
# ipdb.set_trace()
with io.open(result_path + 'train_loss.txt', 'a', encoding='utf-8') as file:
file.write("loss in epoch {}: {}, time: {}\n".format(epoch, loss_epoch / num_batch, t2 - t1))
with io.open(result_path + 'distance_record.txt', 'a', encoding='utf-8') as file:
file.write("Epoch {}:\n".format(epoch))
file.write(" The curriculum_DNS_num is {}, the curriculum_source_DNS_num is {}, the curriculum_distance is {}\n".format(curriculum_DNS_num, curriculum_source_DNS_num, curriculum_score))
file.write(" The average score is {:.4f}\n".format(average_score_item))
file.write(" The score between final_user and pos_target is {:.4f}\n".format(np.mean(distance_final_user_with_pos_target)))
file.write(" The score between source_user and pos_target is {:.4f}\n".format(np.mean(distance_source_user_with_pos_target)))
file.write(" The score between neg_target_candidate and pos_target is {:.4f}\n".format(np.mean(distance_neg_target_candidate_with_pos_target)))
file.write(" The score between neg_source_candidate and pos_target is {:.4f}\n".format(np.mean(distance_neg_source_candidate_with_pos_target)))
file.write(" The score between final_user and source_user is {:.4f}\n".format(np.mean(distance_final_user_with_source_user)))
file.write(" The score between random_user is {:.4f}\n".format(np.mean(distance_random_user_rep)))
file.write(" The mean order of pos item in candidate is {:.4f}, in range is {:.4f}, and in sample is {:.4f}\n".format(sum(pos_order_in_candidate) / num_batch, sum(pos_order_in_range) / num_batch, sum(pos_order_in_sample) / num_batch))
model.eval()
# if (args.dataset=='amazon_toy' and epoch >= 40) or (args.dataset=='amazon_game' and epoch >= 0):
if epoch >= 20: # for fast training
T = time.time() - t0
t_test = evaluate_SASRec_V2_iteration_savedict(model, dataset, args, user_list, file_result_path, epoch)
t3 = time.time()
ndcg_list.append(t_test[2])
hr_list.append(t_test[7])
auc_list.append(t_test[10])
loss_test_list.append(t_test[11])
# ipdb.set_trace()
if curriculum_DNS_num == 0:
print('epoch:%d, epoch_time: %.4f(s), total_time: %.4f(s), test: NDCG@1: %.4f, NDCG@5: %.4f, NDCG@10: %.4f, NDCG@20: %.4f, NDCG@50: %.4f, HR@1: %.4f, HR@5: %.4f, HR@10: %.4f, HR@20: %.4f, HR@50: %.4f, AUC: %.4f, loss: %.4f, pos_score is %.4f, neg_RDNS_score is %.4f, neg_RNS_score is %.4f, Number_of_user in train: %d\n' % (epoch, t3-t1, t3-t0, t_test[0], t_test[1], t_test[2], t_test[3], t_test[4], t_test[5], t_test[6], t_test[7], t_test[8], t_test[9], t_test[10], t_test[11], sum(model_score_pos_sum) / sum(with_train_score_num), sum(model_score_neg_DNS_sum) / sum(with_train_score_num), sum(model_score_neg_RNS_sum) / sum(with_train_score_num), len(torch.unique(u_all_tensor))))
with io.open(result_path + 'test_performance.txt', 'a', encoding='utf-8') as file:
file.write('epoch:%d, epoch_time: %.4f(s), total_time: %.4f(s), test:\n' % (epoch, t3-t1, t3-t0))
file.write(' NDCG@1: %.4f, NDCG@5: %.4f, NDCG@10: %.4f, NDCG@20: %.4f, NDCG@50: %.4f, HR@1: %.4f, HR@5: %.4f, HR@10: %.4f, HR@20: %.4f, HR@50: %.4f, AUC: %.4f, loss: %.4f, pos_score is %.4f, neg_RDNS_score is %.4f, neg_RNS_score is %.4f, Number_of_user in train: %d\n' % (t_test[0], t_test[1], t_test[2], t_test[3], t_test[4], t_test[5], t_test[6], t_test[7], t_test[8], t_test[9], t_test[10], t_test[11], sum(model_score_pos_sum) / sum(with_train_score_num), sum(model_score_neg_DNS_sum) / sum(with_train_score_num), sum(model_score_neg_RNS_sum) / sum(with_train_score_num), len(torch.unique(u_all_tensor))))
else:
print('epoch:%d, epoch_time: %.4f(s), total_time: %.4f(s), test: NDCG@1: %.4f, NDCG@5: %.4f, NDCG@10: %.4f, NDCG@20: %.4f, NDCG@50: %.4f, HR@1: %.4f, HR@5: %.4f, HR@10: %.4f, HR@20: %.4f, HR@50: %.4f, AUC: %.4f, loss: %.4f, pos_score is %.4f, neg_RDNS_score is %.4f, neg_RNS_score is %.4f, Number_of_user in train: %d, DNS_prob: %.4f, source_DNS_prob: %.4f\n' % (epoch, t3-t1, t3-t0, t_test[0], t_test[1], t_test[2], t_test[3], t_test[4], t_test[5], t_test[6], t_test[7], t_test[8], t_test[9], t_test[10], t_test[11], sum(model_score_pos_sum) / sum(with_train_score_num), sum(model_score_neg_DNS_sum) / sum(with_train_score_num), sum(model_score_neg_RNS_sum) / sum(with_train_score_num), len(torch.unique(u_all_tensor)), sum(raw_DNS_num)/(sum(with_train_score_num)*curriculum_DNS_num), sum(raw_DNS_source_num)/(sum(with_train_score_num)*max(curriculum_source_DNS_num,1))))
with io.open(result_path + 'test_performance.txt', 'a', encoding='utf-8') as file:
file.write('epoch:%d, epoch_time: %.4f(s), total_time: %.4f(s), test:\n' % (epoch, t3-t1, t3-t0))
file.write(' NDCG@1: %.4f, NDCG@5: %.4f, NDCG@10: %.4f, NDCG@20: %.4f, NDCG@50: %.4f, HR@1: %.4f, HR@5: %.4f, HR@10: %.4f, HR@20: %.4f, HR@50: %.4f, AUC: %.4f, loss: %.4f, pos_score is %.4f, neg_RDNS_score is %.4f, neg_RNS_score is %.4f, Number_of_user in train: %d, DNS_prob: %.4f, source_DNS_prob: %.4f, outlier_prob:%.4f\n' % (t_test[0], t_test[1], t_test[2], t_test[3], t_test[4], t_test[5], t_test[6], t_test[7], t_test[8], t_test[9], t_test[10], t_test[11], sum(model_score_pos_sum) / sum(with_train_score_num), sum(model_score_neg_DNS_sum) / sum(with_train_score_num), sum(model_score_neg_RNS_sum) / sum(with_train_score_num), len(torch.unique(u_all_tensor)), sum(raw_DNS_num)/(sum(with_train_score_num)*curriculum_DNS_num), sum(raw_DNS_source_num)/(sum(with_train_score_num)*max(curriculum_source_DNS_num,1)), sum(raw_outlier_source_num)/max(sum(raw_outlier_positive_num),1)))
early_stopping(epoch, model, result_path, t_test)
if early_stopping.counter > early_stopping.patience:
print("Save in path:{}\n".format(result_path))
print("Early stopping in the epoch {}, the NDCG@10: {:.4f}, HR@10: {:.4f}, AUC: {:.4f}, loss: {:.4f}\n".format(early_stopping.save_epoch, early_stopping.best_performance[2], early_stopping.best_performance[7], early_stopping.best_performance[10], early_stopping.best_performance[11]))
print('NDCG@1: %.4f, NDCG@5: %.4f, NDCG@10: %.4f, NDCG@20: %.4f, NDCG@50: %.4f, HR@1: %.4f, HR@5: %.4f, HR@10: %.4f, HR@20: %.4f, HR@50: %.4f, AUC: %.4f, loss: %.4f\n' % (early_stopping.best_performance[0], early_stopping.best_performance[1], early_stopping.best_performance[2], early_stopping.best_performance[3], early_stopping.best_performance[4], early_stopping.best_performance[5], early_stopping.best_performance[6], early_stopping.best_performance[7], early_stopping.best_performance[8], early_stopping.best_performance[9], early_stopping.best_performance[10], early_stopping.best_performance[11]))
with io.open(result_path + 'save_model.txt', 'a', encoding='utf-8') as file:
file.write("Early stopping in the epoch {}, the NDCG@10: {:.4f}, HR@10: {:.4f}, AUC: {:.4f}, loss_rec: {:.4f}\n".format(epoch, early_stopping.best_performance[2], early_stopping.best_performance[7], early_stopping.best_performance[10], early_stopping.best_performance[11]))
file.write('NDCG@1: %.4f, NDCG@5: %.4f, NDCG@10: %.4f, NDCG@20: %.4f, NDCG@50: %.4f, HR@1: %.4f, HR@5: %.4f, HR@10: %.4f, HR@20: %.4f, HR@50: %.4f, AUC: %.4f, loss: %.4f\n' % (early_stopping.best_performance[0], early_stopping.best_performance[1], early_stopping.best_performance[2], early_stopping.best_performance[3], early_stopping.best_performance[4], early_stopping.best_performance[5], early_stopping.best_performance[6], early_stopping.best_performance[7], early_stopping.best_performance[8], early_stopping.best_performance[9], early_stopping.best_performance[10], early_stopping.best_performance[11]))
break
sampler.close()