InvalidArgumentError Traceback (most recent call last) in 5 bert_tokenizer = BertTokenizer.from_pretrained(pretrained_weights) 6 ----> 7 bert_barebone = TFBertModel.from_pretrained(pretrained_weights) 8 bert_for_nq = TFBertForNQDemo.from_pretrained(pretrained_weights) 9 /kaggle/input/nq-competition/transformers/modeling_tf_utils.py in from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs) 288 return load_pytorch_checkpoint_in_tf2_model(model, resolved_archive_file) 289 --> 290 ret = model(model.dummy_inputs, training=False) # build the network with dummy inputs 291 292 assert os.path.isfile(resolved_archive_file), "Error retrieving file {}".format(resolved_archive_file) /opt/conda/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/base_layer.py in __call__(self, inputs, *args, **kwargs) 889 with base_layer_utils.autocast_context_manager( 890 self._compute_dtype): --> 891 outputs = self.call(cast_inputs, *args, **kwargs) 892 self._handle_activity_regularization(inputs, outputs) 893 self._set_mask_metadata(inputs, outputs, input_masks) /kaggle/input/nq-competition/transformers/modeling_tf_bert.py in call(self, inputs, **kwargs) 682 683 def call(self, inputs, **kwargs): --> 684 outputs = self.bert(inputs, **kwargs) 685 return outputs 686 /opt/conda/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/base_layer.py in __call__(self, inputs, *args, **kwargs) 889 with base_layer_utils.autocast_context_manager( 890 self._compute_dtype): --> 891 outputs = self.call(cast_inputs, *args, **kwargs) 892 self._handle_activity_regularization(inputs, outputs) 893 self._set_mask_metadata(inputs, outputs, input_masks) /kaggle/input/nq-competition/transformers/modeling_tf_bert.py in call(self, inputs, attention_mask, token_type_ids, position_ids, head_mask, inputs_embeds, training) 541 # head_mask = tf.constant([0] * self.num_hidden_layers) 542 --> 543 embedding_output = self.embeddings([input_ids, position_ids, token_type_ids, inputs_embeds], training=training) 544 encoder_outputs = self.encoder([embedding_output, extended_attention_mask, head_mask], training=training) 545 /opt/conda/lib/python3.6/site-packages/tensorflow_core/python/keras/engine/base_layer.py in __call__(self, inputs, *args, **kwargs) 889 with base_layer_utils.autocast_context_manager( 890 self._compute_dtype): --> 891 outputs = self.call(cast_inputs, *args, **kwargs) 892 self._handle_activity_regularization(inputs, outputs) 893 self._set_mask_metadata(inputs, outputs, input_masks) /kaggle/input/nq-competition/transformers/modeling_tf_bert.py in call(self, inputs, mode, training) 135 """ 136 if mode == "embedding": --> 137 return self._embedding(inputs, training=training) 138 elif mode == "linear": 139 return self._linear(inputs) /kaggle/input/nq-competition/transformers/modeling_tf_bert.py in _embedding(self, inputs, training) 161 token_type_embeddings = self.token_type_embeddings(token_type_ids) 162 --> 163 embeddings = inputs_embeds + position_embeddings + token_type_embeddings 164 embeddings = self.LayerNorm(embeddings) 165 embeddings = self.dropout(embeddings, training=training) /opt/conda/lib/python3.6/site-packages/tensorflow_core/python/ops/math_ops.py in binary_op_wrapper(x, y) 897 with ops.name_scope(None, op_name, [x, y]) as name: 898 if isinstance(x, ops.Tensor) and isinstance(y, ops.Tensor): --> 899 return func(x, y, name=name) 900 elif not isinstance(y, sparse_tensor.SparseTensor): 901 try: /opt/conda/lib/python3.6/site-packages/tensorflow_core/python/ops/math_ops.py in _add_dispatch(x, y, name) 1195 return gen_math_ops.add(x, y, name=name) 1196 else: -> 1197 return gen_math_ops.add_v2(x, y, name=name) 1198 else: 1199 return gen_math_ops.add(x, y, name=name) /opt/conda/lib/python3.6/site-packages/tensorflow_core/python/ops/gen_math_ops.py in add_v2(x, y, name) 544 else: 545 message = e.message --> 546 _six.raise_from(_core._status_to_exception(e.code, message), None) 547 # Add nodes to the TensorFlow graph. 548 _, _, _op = _op_def_lib._apply_op_helper( /opt/conda/lib/python3.6/site-packages/six.py in raise_from(value, from_value) InvalidArgumentError: cannot compute AddV2 as input #1(zero-based) was expected to be a half tensor but is a float tensor [Op:AddV2] name: tf_bert_model_1/bert/embeddings/add/