diff --git a/src/transformers/models/jamba/modeling_jamba.py b/src/transformers/models/jamba/modeling_jamba.py index dd4e3af1a0ce..80d5dad3cbd8 100755 --- a/src/transformers/models/jamba/modeling_jamba.py +++ b/src/transformers/models/jamba/modeling_jamba.py @@ -919,6 +919,8 @@ def slow_forward(self, input_states, cache_params: HybridMambaAttentionDynamicCa else: ssm_state = cache_params.ssm_states[self.layer_idx] + ssm_state = ssm_state.to(hidden_states.device) + if cache_params.has_previous_state and seq_len == 1 and \ cache_params.conv_states[self.layer_idx].shape[0] == batch_size: conv_state = cache_params.conv_states[self.layer_idx] # [batch, intermediate_size, conv_kernel_size] @@ -962,7 +964,6 @@ def slow_forward(self, input_states, cache_params: HybridMambaAttentionDynamicCa discrete_A = torch.exp(A[None, :, None, :] * discrete_time_step[:, :, :, None]) # [batch, intermediate_size, seq_len, ssm_state_size] discrete_B = discrete_time_step[:, :, :, None] * B[:, None, :, :].float() # [batch, intermediade_size, seq_len, ssm_state_size] deltaB_u = discrete_B * hidden_states[:, :, :, None].float() - # 3.c perform the recurrence y ← SSM(A, B, C)(x) scan_outputs = [] for i in range(seq_len):