-
Notifications
You must be signed in to change notification settings - Fork 28.2k
/
Copy pathtest_modeling_llava_next.py
507 lines (437 loc) · 20.3 KB
/
test_modeling_llava_next.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Llava-NeXT model."""
import gc
import unittest
import requests
from huggingface_hub import hf_hub_download
from transformers import (
AutoProcessor,
LlavaNextConfig,
LlavaNextForConditionalGeneration,
is_torch_available,
is_vision_available,
)
from transformers.testing_utils import (
require_bitsandbytes,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
)
if is_torch_available():
import torch
from transformers.models.llava_next.modeling_llava_next import image_size_to_num_patches
else:
is_torch_greater_or_equal_than_2_0 = False
if is_vision_available():
from PIL import Image
class LlavaNextVisionText2TextModelTester:
def __init__(
self,
parent,
ignore_index=-100,
image_token_index=0,
projector_hidden_act="gelu",
seq_length=7,
vision_feature_select_strategy="default",
vision_feature_layer=-1,
text_config={
"model_type": "llama",
"seq_length": 7,
"is_training": True,
"use_input_mask": True,
"use_token_type_ids": False,
"use_labels": True,
"vocab_size": 99,
"hidden_size": 32,
"num_hidden_layers": 2,
"num_attention_heads": 4,
"intermediate_size": 37,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"attention_probs_dropout_prob": 0.1,
"max_position_embeddings": 580,
"type_vocab_size": 16,
"type_sequence_label_size": 2,
"initializer_range": 0.02,
"num_labels": 3,
"num_choices": 4,
"pad_token_id": 0,
},
is_training=True,
vision_config={
"image_size": 16,
"patch_size": 2,
"num_channels": 3,
"is_training": True,
"hidden_size": 32,
"projection_dim": 32,
"num_hidden_layers": 2,
"num_attention_heads": 4,
"intermediate_size": 37,
"dropout": 0.1,
"attention_dropout": 0.1,
"initializer_range": 0.02,
},
):
self.parent = parent
self.ignore_index = ignore_index
self.image_token_index = image_token_index
self.projector_hidden_act = projector_hidden_act
self.vision_feature_select_strategy = vision_feature_select_strategy
self.vision_feature_layer = vision_feature_layer
self.text_config = text_config
self.vision_config = vision_config
self.seq_length = seq_length
self.num_hidden_layers = text_config["num_hidden_layers"]
self.vocab_size = text_config["vocab_size"]
self.hidden_size = text_config["hidden_size"]
self.num_attention_heads = text_config["num_attention_heads"]
self.is_training = is_training
self.batch_size = 3
self.num_channels = 3
self.image_size = 30
self.encoder_seq_length = 342
self.image_grid_pinpoints = [[32, 32]]
def get_config(self):
return LlavaNextConfig(
text_config=self.text_config,
vision_config=self.vision_config,
ignore_index=self.ignore_index,
image_token_index=self.image_token_index,
projector_hidden_act=self.projector_hidden_act,
vision_feature_select_strategy=self.vision_feature_select_strategy,
vision_feature_layer=self.vision_feature_layer,
image_grid_pinpoints=self.image_grid_pinpoints,
)
def prepare_config_and_inputs(self):
pixel_values = floats_tensor(
[
self.batch_size,
5,
self.vision_config["num_channels"],
self.vision_config["image_size"],
self.vision_config["image_size"],
]
)
config = self.get_config()
return config, pixel_values
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
input_ids = ids_tensor([self.batch_size, self.seq_length], config.text_config.vocab_size - 2) + 2
attention_mask = torch.ones(input_ids.shape, dtype=torch.long).to(torch_device)
# we are giving 3 images let's make sure we pass in 3 image tokens
input_ids[:, 1] = config.image_token_index
labels = torch.zeros((self.batch_size, self.seq_length), dtype=torch.long, device=torch_device)
# maskout where the image token is
labels[:, 1] == self.ignore_index
inputs_dict = {
"pixel_values": pixel_values,
"image_sizes": torch.tensor(
[[self.vision_config["image_size"], self.vision_config["image_size"]]] * self.batch_size
),
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": labels,
}
return config, inputs_dict
def create_and_check_llava_next_model_fp16_forward(
self, config, input_ids, pixel_values, attention_mask, image_sizes
):
model = LlavaNextForConditionalGeneration(config=config)
model.to(torch_device)
model.half()
model.eval()
logits = model(
input_ids=input_ids,
attention_mask=attention_mask,
image_sizes=image_sizes,
pixel_values=pixel_values.to(torch.bfloat16),
return_dict=True,
)["logits"]
self.parent.assertFalse(torch.isnan(logits).any().item())
def create_and_check_llava_next_model_fp16_autocast_forward(
self, config, input_ids, pixel_values, attention_mask, image_sizes
):
config.torch_dtype = torch.float16
model = LlavaNextForConditionalGeneration(config=config)
model.to(torch_device)
model.eval()
with torch.autocast(device_type="cuda", dtype=torch.float16):
logits = model(
input_ids=input_ids,
attention_mask=attention_mask,
image_sizes=image_sizes,
pixel_values=pixel_values.to(torch.bfloat16),
return_dict=True,
)["logits"]
self.parent.assertFalse(torch.isnan(logits).any().item())
@require_torch
class LlavaNextForConditionalGenerationModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
"""
Model tester for `LlavaNextForConditionalGeneration`.
"""
all_model_classes = (LlavaNextForConditionalGeneration,) if is_torch_available() else ()
test_pruning = False
test_head_masking = False
def setUp(self):
self.model_tester = LlavaNextVisionText2TextModelTester(self)
self.config_tester = ConfigTester(self, config_class=LlavaNextConfig, has_text_modality=False)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if "image_newline" in name:
continue
elif param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="Feedforward chunking is not yet supported")
def test_feed_forward_chunking(self):
pass
@unittest.skip(reason="CPU offload is not yet supported")
def test_cpu_offload(self):
pass
@unittest.skip(reason="Compile not yet supported because in LLava models")
def test_sdpa_can_compile_dynamic(self):
pass
@unittest.skip(reason="Compile not yet supported because in LLava models")
def test_sdpa_can_dispatch_on_flash(self):
pass
@require_torch
class LlavaNextForConditionalGenerationIntegrationTest(unittest.TestCase):
def setUp(self):
self.processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
self.image = Image.open(requests.get(url, stream=True).raw)
self.prompt = "[INST] <image>\nWhat is shown in this image? [/INST]"
def tearDown(self):
gc.collect()
torch.cuda.empty_cache()
@slow
@require_bitsandbytes
def test_small_model_integration_test(self):
model = LlavaNextForConditionalGeneration.from_pretrained(
"llava-hf/llava-v1.6-mistral-7b-hf",
load_in_4bit=True,
)
inputs = self.processor(self.prompt, self.image, return_tensors="pt")
# verify inputs against original implementation
filepath = hf_hub_download(
repo_id="nielsr/test-image",
filename="llava_1_6_input_ids.pt",
repo_type="dataset",
)
original_input_ids = torch.load(filepath, map_location="cpu")
# replace -200 by image_token_index (since we use token ID = 32000 for the image token)
original_input_ids[original_input_ids == -200] = model.config.image_token_index
assert original_input_ids[0].tolist() == inputs.input_ids[0].tolist()
filepath = hf_hub_download(
repo_id="nielsr/test-image",
filename="llava_1_6_pixel_values.pt",
repo_type="dataset",
)
original_pixel_values = torch.load(filepath, map_location="cpu")
assert torch.allclose(original_pixel_values, inputs.pixel_values.half())
# verify single forward pass
inputs = inputs.to(torch_device)
with torch.no_grad():
output = model(**inputs)
expected_slice = torch.tensor(
[
[-4.7695, -4.5664, -0.2786],
[-10.6250, -10.8906, -2.5254],
[-6.7383, -7.2461, -0.6787],
],
dtype=torch.float32,
device=torch_device,
)
assert torch.allclose(output.logits[0, :3, :3], expected_slice, atol=1e-3)
# verify generation
output = model.generate(**inputs, max_new_tokens=100)
EXPECTED_DECODED_TEXT = '[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot that displays values for multiple quantitative variables represented on axes starting from the same point. This particular radar chart is showing the performance of various models or systems across different metrics or datasets.\n\nThe chart is divided into several sections, each representing a different model or dataset. The axes represent different metrics or datasets, such as "MMM-Vet," "MMM-Bench," "L' # fmt: skip
self.assertEqual(
self.processor.decode(output[0], skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
@require_bitsandbytes
def test_small_model_integration_test_batch(self):
model = LlavaNextForConditionalGeneration.from_pretrained(
"llava-hf/llava-v1.6-mistral-7b-hf", load_in_4bit=True
)
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
cats_image = Image.open(requests.get(url, stream=True).raw)
inputs = self.processor(
[self.prompt, self.prompt],
images=[self.image, cats_image],
return_tensors="pt",
padding=True,
).to(torch_device)
# it should not matter whether two images are the same size or not
output = model.generate(**inputs, max_new_tokens=20)
EXPECTED_DECODED_TEXT = ['[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot that displays', '[INST] \nWhat is shown in this image? [/INST] The image shows two cats lying on a pink surface, which appears to be a couch or a cush'] # fmt: skip
self.assertEqual(
self.processor.batch_decode(output, skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
@require_bitsandbytes
def test_small_model_integration_test_unk_token(self):
# related to (#29835)
model = LlavaNextForConditionalGeneration.from_pretrained(
"llava-hf/llava-v1.6-mistral-7b-hf",
load_in_4bit=True,
)
prompt_with_unk = "[INST] <image>\nWhat is shown in this <unk> image? [/INST]"
inputs = self.processor(prompt_with_unk, self.image, return_tensors="pt")
# verify single forward pass
inputs = inputs.to(torch_device)
with torch.no_grad():
output = model(**inputs)
# verify generation
output = model.generate(**inputs, max_new_tokens=40)
EXPECTED_DECODED_TEXT = '[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot that displays values for multiple quantitative variables represented on axes starting from the same point. This particular radar chart' # fmt: skip
self.assertEqual(
self.processor.decode(output[0], skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
@require_bitsandbytes
def test_small_model_integration_test_batch_different_resolutions(self):
model = LlavaNextForConditionalGeneration.from_pretrained(
"llava-hf/llava-v1.6-mistral-7b-hf",
load_in_4bit=True,
)
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowres_url = "https://4.img-dpreview.com/files/p/TS560x560~forums/56876524/03975b28741443319e9a94615e35667e"
cats_image = Image.open(requests.get(url, stream=True).raw)
lowres_img = Image.open(requests.get(lowres_url, stream=True).raw)
inputs = self.processor(
[self.prompt, self.prompt], images=[lowres_img, cats_image], return_tensors="pt", padding=True
).to(torch_device)
pixel_values = inputs["pixel_values"]
# verify pixel values are padded correctly with 0 when one image has more num_patches than the other
image_num_patches = [
image_size_to_num_patches(
image_size=imsize,
grid_pinpoints=model.config.image_grid_pinpoints,
patch_size=model.config.vision_config.image_size,
)
for imsize in inputs["image_sizes"]
]
for pix_val, num_patch in zip(pixel_values, image_num_patches):
self.assertTrue(torch.all(pix_val[num_patch:] == 0)) # pad on the right
for i in range(num_patch):
self.assertFalse(torch.all(pix_val[i : i + 1] == 0)) # no padding expected in any of patches
# check loss when labels are passed
inputs["labels"] = inputs["input_ids"].clone()
with torch.no_grad():
output = model(**inputs)
expected_slice = torch.tensor(
[[-0.0308, -0.0313, -0.0314], [-0.3064, -0.3013, -0.2986], [-0.1226, -0.1246, -0.1210]],
dtype=torch.float32,
device=torch_device,
)
assert torch.allclose(output.logits[0, -3:, -3:], expected_slice, atol=1e-3)
assert torch.allclose(output.loss, torch.tensor(6.8619, device=torch_device))
# verify generation
output = model.generate(**inputs, max_new_tokens=50)
EXPECTED_DECODED_TEXT = '[INST] \nWhat is shown in this image? [/INST] The image shows a forested area with a misty or foggy atmosphere. In the foreground, there is a grassy field with a few deer grazing. The deer are partially obscured by the fog, and the trees in the background' # fmt: skip
self.assertEqual(
self.processor.decode(output[0], skip_special_tokens=True),
EXPECTED_DECODED_TEXT,
)
@slow
@require_bitsandbytes
def test_small_model_integration_test_batch_matches_single(self):
model = LlavaNextForConditionalGeneration.from_pretrained(
"llava-hf/llava-v1.6-mistral-7b-hf",
load_in_4bit=True,
)
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowres_url = "https://4.img-dpreview.com/files/p/TS560x560~forums/56876524/03975b28741443319e9a94615e35667e"
cats_image = Image.open(requests.get(url, stream=True).raw)
lowres_img = Image.open(requests.get(lowres_url, stream=True).raw)
inputs_batched = self.processor(
[self.prompt, self.prompt], images=[lowres_img, cats_image], return_tensors="pt", padding=True
).to(torch_device)
inputs_single = self.processor(self.prompt, images=lowres_img, return_tensors="pt", padding=True).to(
torch_device
)
# verify generation
output_batched = model.generate(**inputs_batched, max_new_tokens=50)
output_single = model.generate(**inputs_single, max_new_tokens=50)
self.assertEqual(
self.processor.decode(output_batched[0], skip_special_tokens=True),
self.processor.decode(output_single[0], skip_special_tokens=True),
)
@slow
@require_bitsandbytes
def test_padding_side_when_merging_inputs(self):
model = LlavaNextForConditionalGeneration.from_pretrained(
"llava-hf/llava-v1.6-mistral-7b-hf",
load_in_4bit=True,
)
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowres_url = "https://4.img-dpreview.com/files/p/TS560x560~forums/56876524/03975b28741443319e9a94615e35667e"
cats_image = Image.open(requests.get(url, stream=True).raw)
lowres_img = Image.open(requests.get(lowres_url, stream=True).raw)
inputs_batched = self.processor(
[self.prompt, self.prompt], images=[lowres_img, cats_image], return_tensors="pt", padding=True
).to(torch_device)
# model is in eval mode by default so we should get pad on the left side
# we can check the first hidden-states (aka inputs embeds)
# the first element was lo-res image and we expect the first 1414 tokens to be all pads
output_eval = model(**inputs_batched, output_hidden_states=True)
self.assertTrue((output_eval.hidden_states[0][0, :1414, ...] == 0).all().item())
# otherwise padding is on the right side, so it's last 1414 tokens
self.processor.padding_side = "right"
inputs_batched = self.processor(
[self.prompt, self.prompt], images=[lowres_img, cats_image], return_tensors="pt", padding=True
).to(torch_device)
model.train()
with torch.no_grad():
output_train = model(**inputs_batched, output_hidden_states=True)
self.assertTrue((output_train.hidden_states[0][0, -1414:, ...] == 0).all().item())