diff --git a/timm/models/mobilenetv3.py b/timm/models/mobilenetv3.py index a9e3a1a822..2b4053e0e1 100644 --- a/timm/models/mobilenetv3.py +++ b/timm/models/mobilenetv3.py @@ -622,43 +622,6 @@ def _gen_lcnet(variant: str, channel_multiplier: float = 1.0, pretrained: bool = return model -def _gen_lcnet(variant: str, channel_multiplier: float = 1.0, pretrained: bool = False, **kwargs): - """ LCNet - Essentially a MobileNet-V3 crossed with a MobileNet-V1 - - Paper: `PP-LCNet: A Lightweight CPU Convolutional Neural Network` - https://arxiv.org/abs/2109.15099 - - Args: - channel_multiplier: multiplier to number of channels per layer. - """ - arch_def = [ - # stage 0, 112x112 in - ['dsa_r1_k3_s1_c32'], - # stage 1, 112x112 in - ['dsa_r2_k3_s2_c64'], - # stage 2, 56x56 in - ['dsa_r2_k3_s2_c128'], - # stage 3, 28x28 in - ['dsa_r1_k3_s2_c256', 'dsa_r1_k5_s1_c256'], - # stage 4, 14x14in - ['dsa_r4_k5_s1_c256'], - # stage 5, 14x14in - ['dsa_r2_k5_s2_c512_se0.25'], - # 7x7 - ] - model_kwargs = dict( - block_args=decode_arch_def(arch_def), - stem_size=16, - round_chs_fn=partial(round_channels, multiplier=channel_multiplier), - norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), - act_layer=resolve_act_layer(kwargs, 'hard_swish'), - se_layer=partial(SqueezeExcite, gate_layer='hard_sigmoid', force_act_layer=nn.ReLU), - num_features=1280, - **kwargs, - ) - model = _create_mnv3(variant, pretrained, **model_kwargs) - return model - def _cfg(url: str = '', **kwargs): return {