-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path152(最大乘积子序列,动态规划).cpp
84 lines (70 loc) · 2.13 KB
/
152(最大乘积子序列,动态规划).cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#include<iostream>
#include<sstream>
#include<vector>
#include<set>
#include<string>
#include<string.h>
#include<unordered_set>
#include<unordered_map>
#include<stack>
#include<algorithm>
#include<stdarg.h>
#include<queue>
#include <stdint.h>
using namespace std;
struct ListNode {
int val;
ListNode *next;
ListNode(int x) : val(x), next(NULL) {}
};
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
struct TreeLinkNode {
int val;
TreeLinkNode *left, *right, *next;
TreeLinkNode(int x) : val(x), left(NULL), right(NULL), next(NULL) {}
};
// 给定一个数组,找到最大连续乘积
// 思路:动态规划,dp[i]子数组的nums[0...i]的最大乘积
// 因为有可能是正负的,也可能是0,因此要从max*nums[i] / min*nums[i] / nums[i]三者中取最大值
// curmax = max(curmax*nums[i], max(curmin*nums[i], (long long)nums[i]));
// curmin = min(premax*nums[i], min(curmin*nums[i], (long long)nums[i]));
class Solution {
public:
int maxProduct(vector<int>& nums) {
if(nums.size() == 0)
return 0;
int curmax = nums[0], curmin = nums[0], ret = nums[0], premax;
for(int i=1; i<nums.size(); i++) {
premax = curmax; // 保存用于计算curmin
curmax = max(curmax * nums[i], max(curmin * nums[i], nums[i]));
curmin = min(premax * nums[i], min(curmin * nums[i], nums[i]));
ret = max(ret, curmax);
}
return ret;
}
};
int main() {
Solution so;
ListNode* head = new ListNode(1);
head->next = new ListNode(2);
head->next->next = new ListNode(3);
head->next->next->next = new ListNode(4);
head->next->next->next->next = new ListNode(5);
head->next->next->next->next->next = new ListNode(6);
TreeNode* head1 = new TreeNode(1);
//head1->left = new TreeNode(2);
head1->left = new TreeNode(2);
head1->left->left = new TreeNode(2);
TreeLinkNode* root = new TreeLinkNode(1);
root->left = new TreeLinkNode(2);
root->right = new TreeLinkNode(3);
int a[6] = {3, 30, 34, 5, 9, 1};
vector<int> v(a, a+6);
system("pause");
return 0;
}