-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathloss.py
98 lines (83 loc) · 3.66 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from distutils.version import LooseVersion
class CrossEntropyLoss2d(nn.Module):
def __init__(self, weight=None, size_average=False, ignore_index=255):
super(CrossEntropyLoss2d, self).__init__()
self.nll_loss = nn.NLLLoss2d(weight, size_average, ignore_index)
def forward(self, inputs, targets):
return self.nll_loss(F.log_softmax(inputs), targets)
def cross_entropy2d(input, target, weight=None, size_average=True):
# input: (n, c, h, w), target: (n, h, w)
n, c, h, w = input.size()
# log_p: (n, c, h, w)
if LooseVersion(torch.__version__) < LooseVersion('0.3'):
# ==0.2.X
log_p = F.log_softmax(input).cuda()
else:
# >=0.3
log_p = F.log_softmax(input, dim=1).cuda()
# log_p: (n*h*w, c)
log_p = log_p.transpose(1, 2).transpose(2, 3).contiguous()
log_p = log_p[target.view(n, h, w, 1).repeat(1, 1, 1, c) >= 0]
log_p = log_p.view(-1, c)
# target: (n*h*w,)
# mask = (target != 255)
# target = target[mask]
loss = F.nll_loss(log_p, target, weight=weight, size_average=False, ignore_index=255).cuda()
if size_average:
loss /= (n*h*w)
return loss
class FocalLoss2d(nn.Module):
def __init__(self, gamma=2., weight=None, size_average=True, ignore_index=255):
super(FocalLoss2d, self).__init__()
self.gamma = gamma
self.nll_loss = nn.NLLLoss2d(weight, size_average, ignore_index)
def forward(self, inputs, targets):
return self.nll_loss((1 - F.softmax(inputs)) ** self.gamma * F.log_softmax(inputs), targets)
class FocalLoss(nn.Module):
"""
This criterion is a implemenation of Focal Loss, which is proposed in
Focal Loss for Dense Object Detection.
Loss(x, class) = - \alpha (1-softmax(x)[class])^gamma \log(softmax(x)[class])
The losses are averaged across observations for each minibatch.
Args:
alpha(1D Tensor, Variable) : the scalar factor for this criterion
gamma(float, double) : gamma > 0
size_average(bool): size_average(bool): By default, the losses are averaged over observations for each minibatch.
However, if the field size_average is set to False, the losses are
instead summed for each minibatch.
"""
def __init__(self, class_num, alpha=None, gamma=2, size_average=True):
super(FocalLoss, self).__init__()
if alpha is None:
self.alpha = Variable(torch.ones(class_num+1))
else:
if isinstance(alpha, Variable):
self.alpha = alpha
else:
self.alpha = Variable(alpha)
self.gamma = gamma
self.class_num = class_num
self.size_average = size_average
def forward(self, inputs, targets): # variables
P = F.softmax(inputs)
b,c,h,w = inputs.size()
class_mask = Variable(torch.zeros([b,c+1,h,w]).cuda())
class_mask.scatter_(1, targets.long(), 1.)
class_mask = class_mask[:,:-1,:,:]
if inputs.is_cuda and not self.alpha.is_cuda:
self.alpha = self.alpha.cuda()
# print('alpha',self.alpha.size())
alpha = self.alpha[targets.data.view(-1)].view_as(targets)
# print (alpha.size(),class_mask.size(),P.size())
probs = (P * class_mask).sum(1) # + 1e-6#.view(-1, 1)
log_p = probs.log()
batch_loss = -alpha * (torch.pow((1 - probs), self.gamma)) * log_p
if self.size_average:
loss = batch_loss.mean()
else:
loss = batch_loss.sum()
return loss