-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
542 lines (489 loc) · 25.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
"""
# First update `train_config.py` to set paths to your dataset locations.
# You may want to change `--num-workers` according to your machine's memory.
# The default num-workers=8 may cause dataloader to exit unexpectedly when
# machine is out of memory.
# Stage 1
python train.py \
--model-variant mobilenetv3 \
--dataset videomatte \
--resolution-lr 512 \
--seq-length-lr 15 \
--learning-rate-backbone 0.0001 \
--learning-rate-aspp 0.0002 \
--learning-rate-decoder 0.0002 \
--learning-rate-refiner 0 \
--checkpoint-dir checkpoint/stage1 \
--log-dir log/stage1 \
--epoch-start 0 \
--epoch-end 20
# Stage 2
python train.py \
--model-variant mobilenetv3 \
--dataset videomatte \
--resolution-lr 512 \
--seq-length-lr 50 \
--learning-rate-backbone 0.00005 \
--learning-rate-aspp 0.0001 \
--learning-rate-decoder 0.0001 \
--learning-rate-refiner 0 \
--checkpoint checkpoint/stage1/epoch-19.pth \
--checkpoint-dir checkpoint/stage2 \
--log-dir log/stage2 \
--epoch-start 20 \
--epoch-end 22
# Stage 3
python train.py \
--model-variant mobilenetv3 \
--dataset videomatte \
--train-hr \
--resolution-lr 512 \
--resolution-hr 2048 \
--seq-length-lr 40 \
--seq-length-hr 6 \
--learning-rate-backbone 0.00001 \
--learning-rate-aspp 0.00001 \
--learning-rate-decoder 0.00001 \
--learning-rate-refiner 0.0002 \
--checkpoint checkpoint/stage2/epoch-21.pth \
--checkpoint-dir checkpoint/stage3 \
--log-dir log/stage3 \
--epoch-start 22 \
--epoch-end 23
# Stage 4
python train.py \
--model-variant mobilenetv3 \
--dataset imagematte \
--train-hr \
--resolution-lr 512 \
--resolution-hr 2048 \
--seq-length-lr 40 \
--seq-length-hr 6 \
--learning-rate-backbone 0.00001 \
--learning-rate-aspp 0.00001 \
--learning-rate-decoder 0.00005 \
--learning-rate-refiner 0.0002 \
--checkpoint checkpoint/stage3/epoch-22.pth \
--checkpoint-dir checkpoint/stage4 \
--log-dir log/stage4 \
--epoch-start 23 \
--epoch-end 28
"""
import argparse
import torch
import random
import os
from torch import nn
from torch import distributed as dist
from torch import multiprocessing as mp
from torch.nn import functional as F
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import Adam
from torch.cuda.amp import autocast, GradScaler
from torch.utils.data import DataLoader, ConcatDataset
from torch.utils.data.distributed import DistributedSampler
from torch.utils.tensorboard import SummaryWriter
from torchvision.utils import make_grid
from torchvision.transforms.functional import center_crop
from tqdm import tqdm
from dataset.videomatte import (
VideoMatteDataset,
VideoMatteTrainAugmentation,
VideoMatteValidAugmentation,
)
from dataset.imagematte import (
ImageMatteDataset,
ImageMatteAugmentation
)
from dataset.coco import (
CocoPanopticDataset,
CocoPanopticTrainAugmentation,
)
from dataset.spd import (
SuperviselyPersonDataset
)
from dataset.youtubevis import (
YouTubeVISDataset,
YouTubeVISAugmentation
)
from dataset.augmentation import (
TrainFrameSampler,
ValidFrameSampler
)
from model import MattingNetwork
from train_config import DATA_PATHS
from train_loss import matting_loss, segmentation_loss, distill_loss, save_model_output
class Trainer:
def __init__(self, rank, world_size):
self.parse_args()
self.init_distributed(rank, world_size)
self.init_datasets()
self.init_model()
self.init_writer()
self.train()
self.cleanup()
def parse_args(self):
parser = argparse.ArgumentParser()
# Model
parser.add_argument('--model-variant', type=str, required=True, choices=['mobilenetv3', 'resnet50', 'bimobilenet'])
# Matting dataset
parser.add_argument('--dataset', type=str, required=True, choices=['videomatte', 'imagematte'])
parser.add_argument('--prefix', type=str, default='/cluster/work/cvl/haoqin/datasets/matting-data')
# Learning rate
parser.add_argument('--learning-rate-backbone', type=float, required=True)
parser.add_argument('--learning-rate-aspp', type=float, required=True)
parser.add_argument('--learning-rate-decoder', type=float, required=True)
parser.add_argument('--learning-rate-refiner', type=float, required=True)
# Training setting
parser.add_argument('--train-hr', action='store_true')
parser.add_argument('--resolution-lr', type=int, default=512)
parser.add_argument('--resolution-hr', type=int, default=2048)
parser.add_argument('--seq-length-lr', type=int, required=True)
parser.add_argument('--seq-length-hr', type=int, default=6)
parser.add_argument('--downsample-ratio', type=float, default=0.25)
parser.add_argument('--batch-size-per-gpu', type=int, default=1)
parser.add_argument('--num-workers', type=int, default=8)
parser.add_argument('--epoch-start', type=int, default=0)
parser.add_argument('--epoch-end', type=int, default=16)
# Tensorboard logging
parser.add_argument('--log-dir', type=str, required=True)
parser.add_argument('--log-train-loss-interval', type=int, default=20)
parser.add_argument('--log-train-images-interval', type=int, default=500)
# Checkpoint loading and saving
parser.add_argument('--checkpoint', type=str)
parser.add_argument('--checkpoint-dir', type=str, required=True)
parser.add_argument('--checkpoint-save-interval', type=int, default=500)
# Distributed
parser.add_argument('--distributed-addr', type=str, default='localhost')
parser.add_argument('--distributed-port', type=str, default='12388')
# Debugging
parser.add_argument('--disable-progress-bar', action='store_true')
parser.add_argument('--disable-validation', action='store_true')
parser.add_argument('--disable-mixed-precision', action='store_true')
# Distill
parser.add_argument('--distill', action='store_true')
self.args = parser.parse_args()
def init_distributed(self, rank, world_size):
self.rank = rank
self.world_size = world_size
self.log('Initializing distributed')
os.environ['MASTER_ADDR'] = self.args.distributed_addr
os.environ['MASTER_PORT'] = self.args.distributed_port
dist.init_process_group("nccl", rank=rank, world_size=world_size)
def init_datasets(self):
self.log('Initializing matting datasets')
size_hr = (self.args.resolution_hr, self.args.resolution_hr)
size_lr = (self.args.resolution_lr, self.args.resolution_lr)
for dataset in DATA_PATHS.keys():
for dir in DATA_PATHS[dataset].keys():
DATA_PATHS[dataset][dir] = DATA_PATHS[dataset][dir].replace('/cluster/work/cvl/haoqin/datasets/matting-data', self.args.prefix)
# Matting datasets:
if self.args.dataset == 'videomatte':
self.dataset_lr_train = VideoMatteDataset(
videomatte_dir=DATA_PATHS['videomatte_SD']['train'],
background_image_dir=DATA_PATHS['background_images']['train'],
background_video_dir=DATA_PATHS['background_videos']['train'],
size=self.args.resolution_lr,
seq_length=self.args.seq_length_lr,
seq_sampler=TrainFrameSampler(),
transform=VideoMatteTrainAugmentation(size_lr))
if self.args.train_hr:
self.dataset_hr_train = VideoMatteDataset(
videomatte_dir=DATA_PATHS['videomatte_HD']['train'],
background_image_dir=DATA_PATHS['background_images']['train'],
background_video_dir=DATA_PATHS['background_videos']['train'],
size=self.args.resolution_hr,
seq_length=self.args.seq_length_hr,
seq_sampler=TrainFrameSampler(),
transform=VideoMatteTrainAugmentation(size_hr))
self.dataset_valid = VideoMatteDataset(
videomatte_dir=DATA_PATHS['videomatte_SD']['valid'],
background_image_dir=DATA_PATHS['background_images']['valid'],
background_video_dir=DATA_PATHS['background_videos']['valid'],
size=self.args.resolution_hr if self.args.train_hr else self.args.resolution_lr,
seq_length=self.args.seq_length_hr if self.args.train_hr else self.args.seq_length_lr,
seq_sampler=ValidFrameSampler(),
transform=VideoMatteValidAugmentation(size_hr if self.args.train_hr else size_lr))
else:
self.dataset_lr_train = ImageMatteDataset(
imagematte_dir=DATA_PATHS['imagematte']['train'],
background_image_dir=DATA_PATHS['background_images']['train'],
background_video_dir=DATA_PATHS['background_videos']['train'],
size=self.args.resolution_lr,
seq_length=self.args.seq_length_lr,
seq_sampler=TrainFrameSampler(),
transform=ImageMatteAugmentation(size_lr))
if self.args.train_hr:
self.dataset_hr_train = ImageMatteDataset(
imagematte_dir=DATA_PATHS['imagematte']['train'],
background_image_dir=DATA_PATHS['background_images']['train'],
background_video_dir=DATA_PATHS['background_videos']['train'],
size=self.args.resolution_hr,
seq_length=self.args.seq_length_hr,
seq_sampler=TrainFrameSampler(),
transform=ImageMatteAugmentation(size_hr))
self.dataset_valid = ImageMatteDataset(
imagematte_dir=DATA_PATHS['imagematte']['valid'],
background_image_dir=DATA_PATHS['background_images']['valid'],
background_video_dir=DATA_PATHS['background_videos']['valid'],
size=self.args.resolution_hr if self.args.train_hr else self.args.resolution_lr,
seq_length=self.args.seq_length_hr if self.args.train_hr else self.args.seq_length_lr,
seq_sampler=ValidFrameSampler(),
transform=ImageMatteAugmentation(size_hr if self.args.train_hr else size_lr))
# Matting dataloaders:
self.datasampler_lr_train = DistributedSampler(
dataset=self.dataset_lr_train,
rank=self.rank,
num_replicas=self.world_size,
shuffle=True)
self.dataloader_lr_train = DataLoader(
dataset=self.dataset_lr_train,
batch_size=self.args.batch_size_per_gpu,
num_workers=self.args.num_workers,
sampler=self.datasampler_lr_train,
pin_memory=False)
if self.args.train_hr:
self.datasampler_hr_train = DistributedSampler(
dataset=self.dataset_hr_train,
rank=self.rank,
num_replicas=self.world_size,
shuffle=True)
self.dataloader_hr_train = DataLoader(
dataset=self.dataset_hr_train,
batch_size=self.args.batch_size_per_gpu,
num_workers=self.args.num_workers,
sampler=self.datasampler_hr_train,
pin_memory=False)
self.dataloader_valid = DataLoader(
dataset=self.dataset_valid,
batch_size=self.args.batch_size_per_gpu,
num_workers=self.args.num_workers,
pin_memory=False)
# Segementation datasets
self.log('Initializing image segmentation datasets')
self.dataset_seg_image = ConcatDataset([
CocoPanopticDataset(
imgdir=DATA_PATHS['coco_panoptic']['imgdir'],
anndir=DATA_PATHS['coco_panoptic']['anndir'],
annfile=DATA_PATHS['coco_panoptic']['annfile'],
transform=CocoPanopticTrainAugmentation(size_lr)),
SuperviselyPersonDataset(
imgdir=DATA_PATHS['spd']['imgdir'],
segdir=DATA_PATHS['spd']['segdir'],
transform=CocoPanopticTrainAugmentation(size_lr))
])
self.datasampler_seg_image = DistributedSampler(
dataset=self.dataset_seg_image,
rank=self.rank,
num_replicas=self.world_size,
shuffle=True)
self.dataloader_seg_image = DataLoader(
dataset=self.dataset_seg_image,
batch_size=self.args.batch_size_per_gpu * self.args.seq_length_lr,
num_workers=self.args.num_workers,
sampler=self.datasampler_seg_image,
pin_memory=False)
self.log('Initializing video segmentation datasets')
self.dataset_seg_video = YouTubeVISDataset(
videodir=DATA_PATHS['youtubevis']['videodir'],
annfile=DATA_PATHS['youtubevis']['annfile'],
size=self.args.resolution_lr,
seq_length=self.args.seq_length_lr,
seq_sampler=TrainFrameSampler(speed=[1]),
transform=YouTubeVISAugmentation(size_lr))
self.datasampler_seg_video = DistributedSampler(
dataset=self.dataset_seg_video,
rank=self.rank,
num_replicas=self.world_size,
shuffle=True)
self.dataloader_seg_video = DataLoader(
dataset=self.dataset_seg_video,
batch_size=self.args.batch_size_per_gpu,
num_workers=self.args.num_workers,
sampler=self.datasampler_seg_video,
pin_memory=False)
def init_model(self):
self.log('Initializing model')
self.model = MattingNetwork(self.args.model_variant, pretrained_backbone=True).to(self.rank)
if self.args.checkpoint:
self.log(f'Restoring from checkpoint: {self.args.checkpoint}')
self.log(self.model.load_state_dict(
torch.load(self.args.checkpoint, map_location=f'cuda:{self.rank}')))
self.model = nn.SyncBatchNorm.convert_sync_batchnorm(self.model)
self.model_ddp = DDP(self.model, device_ids=[self.rank], broadcast_buffers=False, find_unused_parameters=True)
if self.args.distill:
self.teacher_model = MattingNetwork(self.args.model_variant).to(self.rank)
self.teacher_model = nn.SyncBatchNorm.convert_sync_batchnorm(self.teacher_model)
self.teacher_model_ddp = DDP(self.teacher_model, device_ids=[self.rank], broadcast_buffers=False, find_unused_parameters=True)
self.layers = [(name, module) for name, module in self.model_ddp.named_modules() if str(type(module))[8:-2].split('.')[-1] in ['HardBinaryConv', 'Conv2d']]
self.teacher_layers = [(name, module) for name, module in self.teacher_model_ddp.named_modules() if str(type(module))[8:-2].split('.')[-1] in ['HardBinaryConv', 'Conv2d']]
# self.layers, self.teacher_layers = zip(*[((name1, module1), (name2, module2)) for (name1, module1), (name2, module2) in zip(self.layers, self.teacher_layers) if type(module1) != type(module2)])
for name, module in self.layers:
module.register_forward_hook(save_model_output)
module.output = []
for name, module in self.teacher_layers:
module.register_forward_hook(save_model_output)
module.output = []
self.optimizer = Adam([
{'params': self.model.backbone.parameters(), 'lr': self.args.learning_rate_backbone},
{'params': self.model.aspp.parameters(), 'lr': self.args.learning_rate_aspp},
{'params': self.model.decoder.parameters(), 'lr': self.args.learning_rate_decoder},
{'params': self.model.project_mat.parameters(), 'lr': self.args.learning_rate_decoder},
{'params': self.model.project_seg.parameters(), 'lr': self.args.learning_rate_decoder},
{'params': self.model.refiner.parameters(), 'lr': self.args.learning_rate_refiner},
])
self.scaler = GradScaler()
def init_writer(self):
if self.rank == 0:
self.log('Initializing writer')
self.writer = SummaryWriter(self.args.log_dir)
def train(self):
for epoch in range(self.args.epoch_start, self.args.epoch_end):
self.epoch = epoch
self.step = epoch * len(self.dataloader_lr_train)
if not self.args.disable_validation:
self.validate()
self.log(f'Training epoch: {epoch}')
for true_fgr, true_pha, true_bgr in tqdm(self.dataloader_lr_train, disable=self.args.disable_progress_bar or self.rank != 0, dynamic_ncols=True):
# Low resolution pass
self.train_mat(true_fgr, true_pha, true_bgr, downsample_ratio=1, tag='lr')
# High resolution pass
if self.args.train_hr:
true_fgr, true_pha, true_bgr = self.load_next_mat_hr_sample()
self.train_mat(true_fgr, true_pha, true_bgr, downsample_ratio=self.args.downsample_ratio, tag='hr')
# Segmentation pass
if self.step % 2 == 0:
true_img, true_seg = self.load_next_seg_video_sample()
self.train_seg(true_img, true_seg, log_label='seg_video')
else:
true_img, true_seg = self.load_next_seg_image_sample()
self.train_seg(true_img.unsqueeze(1), true_seg.unsqueeze(1), log_label='seg_image')
if self.step % self.args.checkpoint_save_interval == 0:
self.save()
self.step += 1
def train_mat(self, true_fgr, true_pha, true_bgr, downsample_ratio, tag):
true_fgr = true_fgr.to(self.rank, non_blocking=True)
true_pha = true_pha.to(self.rank, non_blocking=True)
true_bgr = true_bgr.to(self.rank, non_blocking=True)
true_fgr, true_pha, true_bgr = self.random_crop(true_fgr, true_pha, true_bgr)
true_src = true_fgr * true_pha + true_bgr * (1 - true_pha)
with autocast(enabled=not self.args.disable_mixed_precision):
pred_fgr, pred_pha, pred_fgr_s, pred_pha_s = self.model_ddp(true_src, downsample_ratio=downsample_ratio)[:4]
true_fgr_s = F.interpolate(true_fgr.flatten(0, 1), size=pred_fgr_s.shape[-2:], mode='bilinear', align_corners=False).unflatten(0,(true_fgr.shape[0], true_fgr.shape[1]))
true_pha_s = F.interpolate(true_pha.flatten(0, 1), size=pred_pha_s.shape[-2:], mode='bilinear', align_corners=False).unflatten(0,(true_pha.shape[0], true_pha.shape[1]))
#print('normal:', pred_fgr.shape, pred_pha.shape, true_fgr.shape, true_pha.shape)
#print('small:', pred_fgr_s.shape, pred_pha_s.shape, true_fgr_s.shape, true_pha_s.shape)
loss = matting_loss(pred_fgr, pred_pha, true_fgr, true_pha)
loss['total'] += matting_loss(pred_fgr_s, pred_pha_s, true_fgr_s, true_pha_s, 1)['total'] * 0.25
if self.args.distill:
self.teacher_model(true_src, downsample_ratio=downsample_ratio)[:2]
loss['distill'] = distill_loss(self.layers, self.teacher_layers)
loss['total'] += loss['distill']
self.scaler.scale(loss['total']).backward()
self.scaler.step(self.optimizer)
self.scaler.update()
self.optimizer.zero_grad()
if self.rank == 0 and self.step % (self.args.log_train_loss_interval * 20) == 0:
for loss_name, loss_value in loss.items():
self.writer.add_scalar(f'train_{tag}_{loss_name}', loss_value, self.step)
if self.rank == 0 and self.step % self.args.log_train_images_interval == 0:
self.writer.add_image(f'train_{tag}_pred_fgr', make_grid(pred_fgr.flatten(0, 1), nrow=pred_fgr.size(1)), self.step)
self.writer.add_image(f'train_{tag}_pred_pha', make_grid(pred_pha.flatten(0, 1), nrow=pred_pha.size(1)), self.step)
self.writer.add_image(f'train_{tag}_true_fgr', make_grid(true_fgr.flatten(0, 1), nrow=true_fgr.size(1)), self.step)
self.writer.add_image(f'train_{tag}_true_pha', make_grid(true_pha.flatten(0, 1), nrow=true_pha.size(1)), self.step)
self.writer.add_image(f'train_{tag}_true_src', make_grid(true_src.flatten(0, 1), nrow=true_src.size(1)), self.step)
def train_seg(self, true_img, true_seg, log_label):
true_img = true_img.to(self.rank, non_blocking=True)
true_seg = true_seg.to(self.rank, non_blocking=True)
true_img, true_seg = self.random_crop(true_img, true_seg)
with autocast(enabled=not self.args.disable_mixed_precision):
pred_seg = self.model_ddp(true_img, segmentation_pass=True)[0]
loss = segmentation_loss(pred_seg, true_seg)
if self.args.distill:
self.teacher_model(true_img, segmentation_pass=True)[0]
loss += distill_loss(self.layers, self.teacher_layers)
self.scaler.scale(loss).backward()
self.scaler.step(self.optimizer)
self.scaler.update()
self.optimizer.zero_grad()
if self.rank == 0 and (self.step - self.step % 2) % self.args.log_train_loss_interval == 0:
self.writer.add_scalar(f'{log_label}_loss', loss, self.step)
if self.rank == 0 and (self.step - self.step % 2) % self.args.log_train_images_interval == 0:
self.writer.add_image(f'{log_label}_pred_seg', make_grid(pred_seg.flatten(0, 1).float().sigmoid(), nrow=self.args.seq_length_lr), self.step)
self.writer.add_image(f'{log_label}_true_seg', make_grid(true_seg.flatten(0, 1), nrow=self.args.seq_length_lr), self.step)
self.writer.add_image(f'{log_label}_true_img', make_grid(true_img.flatten(0, 1), nrow=self.args.seq_length_lr), self.step)
def load_next_mat_hr_sample(self):
try:
sample = next(self.dataiterator_mat_hr)
except:
self.datasampler_hr_train.set_epoch(self.datasampler_hr_train.epoch + 1)
self.dataiterator_mat_hr = iter(self.dataloader_hr_train)
sample = next(self.dataiterator_mat_hr)
return sample
def load_next_seg_video_sample(self):
try:
sample = next(self.dataiterator_seg_video)
except:
self.datasampler_seg_video.set_epoch(self.datasampler_seg_video.epoch + 1)
self.dataiterator_seg_video = iter(self.dataloader_seg_video)
sample = next(self.dataiterator_seg_video)
return sample
def load_next_seg_image_sample(self):
try:
sample = next(self.dataiterator_seg_image)
except:
self.datasampler_seg_image.set_epoch(self.datasampler_seg_image.epoch + 1)
self.dataiterator_seg_image = iter(self.dataloader_seg_image)
sample = next(self.dataiterator_seg_image)
return sample
def validate(self):
if self.rank == 0:
self.log(f'Validating at the start of epoch: {self.epoch}')
self.model_ddp.eval()
total_loss, total_count = 0, 0
with torch.no_grad():
with autocast(enabled=not self.args.disable_mixed_precision):
for true_fgr, true_pha, true_bgr in tqdm(self.dataloader_valid, disable=self.args.disable_progress_bar, dynamic_ncols=True):
true_fgr = true_fgr.to(self.rank, non_blocking=True)
true_pha = true_pha.to(self.rank, non_blocking=True)
true_bgr = true_bgr.to(self.rank, non_blocking=True)
true_src = true_fgr * true_pha + true_bgr * (1 - true_pha)
batch_size = true_src.size(0)
pred_fgr, pred_pha = self.model(true_src)[:2]
total_loss += matting_loss(pred_fgr, pred_pha, true_fgr, true_pha)['total'].item() * batch_size
total_count += batch_size
avg_loss = total_loss / total_count
self.log(f'Validation set average loss: {avg_loss}')
self.writer.add_scalar('valid_loss', avg_loss, self.step)
self.model_ddp.train()
dist.barrier()
def random_crop(self, *imgs):
h, w = imgs[0].shape[-2:]
w = random.choice(range(w // 2, w)) // 16 * 16
h = random.choice(range(h // 2, h)) // 16 * 16
results = []
for img in imgs:
B, T = img.shape[:2]
img = img.flatten(0, 1)
img = F.interpolate(img, (max(h, w), max(h, w)), mode='bilinear', align_corners=False)
img = center_crop(img, (h, w))
img = img.reshape(B, T, *img.shape[1:])
results.append(img)
return results
def save(self):
if self.rank == 0:
os.makedirs(self.args.checkpoint_dir, exist_ok=True)
torch.save(self.model.state_dict(), os.path.join(self.args.checkpoint_dir, f'epoch-{self.epoch}.pth'))
self.log('Model saved')
dist.barrier()
def cleanup(self):
dist.destroy_process_group()
def log(self, msg):
print(f'[GPU{self.rank}] {msg}')
if __name__ == '__main__':
world_size = torch.cuda.device_count()
mp.spawn(
Trainer,
nprocs=world_size,
args=(world_size,),
join=True)