-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfit_ecoli_FPGaussSkew.jl
164 lines (142 loc) · 4.97 KB
/
fit_ecoli_FPGaussSkew.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
using DifferentialEquations, ApproxFun, ModelingToolkit
using DiffEqOperators, DomainSets, Interpolations
using Plots, StatsPlots
using Distributions
using Random, Statistics
# Parameters, variables, and derivatives
@parameters t y a k η0 η1 ϵ β σ y0 t0
@variables p(..)
Dt = Differential(t)
Dy = Differential(y)
Dyy = Differential(y)^2
# this is Uri's group guess
# η0=0.33
# η1=0.0048
# β=1.06
# ϵ=0.147
# a=0.33
# k=0.29
y_min = -5.0
y_max = 8.0
# 1D PDE and boundary conditions
eq = Dt(p(t,y)) ~ p(t,y)*β*a* exp(a*(y+k))/(exp(a*y)+exp(a*k))^2 -
Dy(p(t,y))*(η0 + η1*(t+t0) -β*exp(a*y)/(exp(a*y)+exp(a*k))) +
ϵ*Dyy(p(t,y))
bcs = [p(0,y) ~ 1/sqrt(2π)/σ*exp(-(y-y0)^2/2/σ^2),
p(t,y_min) ~ 0.0,
p(t,y_max) ~ 0.0]
# Space and time domains
domains = [t ∈ Interval(0.0,100.0),
y ∈ Interval(y_min,y_max)]
# PDE system
par = [η0 => 0.33, η1=>0.0048, β=>1.06, ϵ=>0.147, a=>0.33, k=>0.29, y0 => -0.5, σ =>0.1, t0=>40.0]
@named pdesys = PDESystem(eq,bcs,domains,[t,y],[p(t,y)],par)
# Method of lines discretization
dy = 0.1
order = 2
discretization = MOLFiniteDifference([y=>dy],t)
# Convert the PDE problem into an ODE problem
prob = discretize(pdesys,discretization)
# Plot results and compare with exact solution
y_range = (y_min:dy:y_max)[2:end-1]
function FPsolveGauss(η0,η1,ϵ,β,a,k,y0,σ,t0,t1,y_range,prob)
"""
solves the Fokker-Planck equation using the parameters and boundary conditions
at t1 and then calculate the mean and standard deviation
"""
par = [η0,η1,β,ϵ,σ,y0,t0]
prob2 = remake(prob,p=par)
sol2 = solve(prob2,Tsit5(),saveat=[t1-t0])
p = sol2.u[1] / sum(sol2.u[1]) # calculate normalized p(y)
m = sum(p .* y_range)
v = sum(p .* y_range .^2) - m^2
s = sum(p .* (y_range .- m).^3)/v^1.5
return m,v,s
end
function FPsolve(η0,η1,ϵ,β,a,k,y0,σ,t0,t1,y_range,prob)
"""
solves the Fokker-Planck equation using the parameters and boundary conditions
at t1 and then creates a normalized Fun approximation that can be used as
probability distribution
"""
par = [η0,η1,β,ϵ,σ,y0,t0]
prob2 = remake(prob,p=par)
sol2 = solve(prob2,Tsit5(),saveat=[t1-t0])
solution1itp = CubicSplineInterpolation(y_range,sol2.u[1])
f = Fun(y->solution1itp(y), (y_min+dy)..(y_max-dy))
f = f/sum(f)
return f, sol2.u[1]
end
struct FPDist{T<:Real} <: ContinuousUnivariateDistribution
η0::T
η1::T
ϵ::T
β::T
a::T
k::T
y0::T
σ::T
t0::T
t1::T
y_range::StepRangeLen
f::Fun
end
FPDist(η0,η1,ϵ,β,a,k,y0,σ,t0,t1,y_range) = FPDist(η0,η1,ϵ,β,a,k,y0,σ,t0,t1,y_range,FPsolve(η0,η1,ϵ,β,a,k,y0,σ,t0,t1,y_range,prob)[1])
Distributions.rand(rng::AbstractRNG, d::FPDist) = ApproxFun.sample(d.f)
Distributions.logpdf(d::FPDist, x::Real) = log(d.f(x)<=0 ? 0.0 : d.f(x))
Distributions.logpdf(d::FPDist, x::AbstractVector{<:Real}) = log.(d.f.(x))
Distributions.minimum(d::FPDist) = y_min
Distributions.maximum(d::FPDist) = y_max
f,sol = FPsolve(0.35,0.0048,1.06,0.147,0.33,0.29,-0.5,0.1,0.0,1.0,y_range,prob)
d = FPDist(0.35,0.0048,1.06,0.147,0.33,0.29,-0.5,0.1,0.0,1.0,y_range)
data = rand(d,50) # create test data
mean(data)
std(data)
m_s,v_s,s_s = FPsolveGauss(0.3500,0.0048,1.06,0.147,0.33,0.29,-0.5,0.1,0.0,1.0,y_range,prob)
gammatt = min(0.99,abs(s_s)^(2/3))
delta = sqrt(π*gammatt/(gammatt+((4-π)/2)^(2/3))/2)*sign(s_s)
alpha = delta/sqrt(1-delta^2)
omega = sqrt(v_s/(1-2*delta^2/π))
xi = m_s - omega*delta*sqrt(2/π)
solplot = plot(y_range,sol)
plot!(y_range,pdf.(Normal(m_s,sqrt(v_s)),y_range))
plot!(y_range,pdf.(SkewNormal(xi,omega,alpha),y_range))
sum((sol .-pdf.(Normal(m_s,sqrt(v_s)),y_range)).^2)
sum((sol .-pdf.(SkewNormal(xi,omega,alpha),y_range)).^2)
using Turing
using FillArrays
using LinearAlgebra: I
#using ReverseDiff
Turing.setadbackend(:forwarddiff)
@model function fpmodel(data,t1)
eta0 ~ Normal(0.35,0.2)
par = [eta0,0.0048,1.06,0.147,0.33,0.29,-0.5,0.1,0.0]
prob2 = remake(prob,p=par)
sol2 = solve(prob2,Tsit5(),saveat=[t1])
if sol2.retcode != :Success # don't consider if solver fails
# @show "solver fail"
Turing.@addlogprob! -Inf
return
end
p = sol2.u[1] / sum(sol2.u[1]) # calculate normalized p(y)
m = sum(p .* y_range)
v = sum(p .* (y_range .^2)) - m^2
if v<=0 # variance cannot be less than zero
# @show "solver fail"
Turing.@addlogprob! -Inf
return
end
# now calculate the parameters for a skewed normal
# using: https://en.wikipedia.org/wiki/Skew_normal_distribution
s = sum(p .* (y_range .- m).^3)/v^1.5
# @show s
gammatt = min(0.99,abs(s)^(2/3))
delta = sqrt(π*gammatt/(gammatt+((4-π)/2)^(2/3))/2)*sign(s)
alpha = delta/sqrt(1-delta^2)
omega = sqrt(v/(1-2*delta^2/π))
xi = m - omega*delta*sqrt(2/π)
# @show m,v,s
data ~ filldist(SkewNormal(xi,omega,alpha),length(data))
end
chain = Turing.sample(fpmodel(data,1.0), NUTS(0.65), 1000)
plot(chain)