-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVI_vanderpol_hidden.jl
206 lines (172 loc) · 5.54 KB
/
VI_vanderpol_hidden.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
using DifferentialEquations
using DifferentialEquations.EnsembleAnalysis
using Turing
using Distributions
using FillArrays
using StatsPlots
using Random
using Plots
using ReverseDiff
using Memoization
#using Tracker
using Turing: Variational
Random.seed!(08)
function vanderpol!(du,u,p,t)
x1,x2 = u
θ,ϕ = p
du[1] = x2
du[2] = θ*(1-x1^2)*x2 - x1
end
function add_noise!(du,u,p,t)
x1,x2 = u
θ,ϕ = p
du[1] = ϕ # 0
du[2] = ϕ
end
u0 = [0.1, 0.1]
tspan = [0.0, 2.0]
p = [1.0,0.1]
dt=0.1
prob1 = SDEProblem(vanderpol!, add_noise!, u0, tspan, p)
sol = solve(prob1,EM(),dt=dt)
time = sol.t
p1 = plot(sol)
#plot(sol, vars = (1,2))
ensembleprob = EnsembleProblem(prob1)
data = solve(ensembleprob,EM(),EnsembleThreads(),dt=dt,trajectories=50)
#plot(EnsembleSummary(data))
#ar=Array(sol)
ar=Array(data) # first index x1,x2; second index time; third index trajectory
ns = rand(Normal(0,.3),2,size(ar,2),size(ar,3)) #this is the measurement noise
#simulation + noise
arn = ar + ns
slope = 5.0
scale = 50.0
function g_sigmoid(x,slope,scale)
sig = scale ./ (1.0 .+ exp.(-slope*x))
return sig
end
# x1 and x2 are the untransformed solutions
x1 = ar[1,:,:]
x2 = ar[2,:,:]
# x1_sig and x2_sig are the transformed solutions
x1_sig = g_sigmoid(ar[1,:,:],slope,scale)
x2_sig = g_sigmoid(ar[2,:,:],slope,scale)
# x1 and x2 are the untransformed solutions
x1n = arn[1,:,:]
x2n = arn[2,:,:]
# x1_sig and x2_sig are the transformed solutions
x1n_sig = g_sigmoid(ar[1,:,:],slope,scale) + ns[1,:,:]
x2n_sig = g_sigmoid(ar[2,:,:],slope,scale) + ns[2,:,:]
plot(x1n_sig[:,1])
plot!(x2n_sig[:,1])
#Turing.setadbackend(:reversediff)
@model function fitvpEM(datax, datay)
θ ~ Gamma(0.1,10.0)
ϕ ~ Uniform(0,0.5)
dxh = datay[1:end-1]
dyh = θ .* (1 .- datax[1:end-1] .^ 2) .* datay[1:end-1] .- datax[1:end-1]
datax[2:end] ~ MvNormal(datax[1:end-1] .+ dxh * dt,ϕ*sqrt(dt))
datay[2:end] ~ MvNormal(datay[1:end-1] .+ dyh * dt,ϕ*sqrt(dt))
end
# here I am trying to fit and SDE with f(du,u,p,t) and g(du,u,p,t)
# fitSDE(f::F,g::G,...) where {F,G}
@model function fitSDE(f::F,g::G,dt,data) where {F,G}
θ ~ TruncatedNormal(0,3,0,Inf)
ϕ ~ Uniform(0,0.5)
p = [θ,ϕ]
data = [datax[1:end-1] datay[1:end-1]]'
du = eltype(θ).(zero(data))
dun = eltype(θ).(zero(data))
ff(du,u) = f(du,u,p,0)
ff.(du,data)
gg(du,u) = g(du,u,p,0)
gg.(dun,data,p,0)
data[2:end] ~ MvNormal(data .+ du * dt,dun * sqrt(dt))
end
@model function fitvpEMn(datax, datay)
σ = 0.1
θ ~ Gamma(0.25,4.0)
ϕ ~ Uniform(0,0.2)
# create arrays for hidden variables
xh = eltype(θ).(zero(datax))
yh = eltype(θ).(zero(datay))
xh[1] = 0.1
yh[1] = 0.1
for i in 2:length(datax)
dxh = yh[i-1]
dyh = θ * (1.0 - xh[i-1]^2) * yh[i-1] - xh[i-1]
xh[i] ~ Normal(xh[i-1] + dxh * dt,ϕ*sqrt(dt))
yh[i] ~ Normal(yh[i-1] + dyh * dt,ϕ*sqrt(dt))
end
datax ~ MvNormal(xh,σ)
datay ~ MvNormal(yh,σ)
end
@model function fitvpEMnsig(datax, datay)
σ = 0.1
θ ~ Gamma(0.1,10.0)
ϕ ~ Uniform(0,0.2)
# create arrays for hidden variables
xh = zero(datax)
yh = zero(datay)
xh[1] = 0.1
yh[1] = 0.1
for i in 2:length(datax)
dxh = yh[i-1]
dyh = θ * (1.0 - xh[i-1]^2) * yh[i-1] - xh[i-1]
xh[i] ~ Normal(xh[i-1] + dxh * dt,ϕ*sqrt(dt))
yh[i] ~ Normal(yh[i-1] + dyh * dt,ϕ*sqrt(dt))
end
datax ~ MvNormal(g_sigmoid(xh,slope,scale),σ)
datay ~ MvNormal(g_sigmoid(yh,slope,scale),σ)
end
#model = fitvp(y,prob1)
model = fitvpEMn(x1n[:,1],x2n[:,1])
model = fitvpEMnsig(x1n_sig[:,1],x2n_sig[:,1])
plot(x1n[:,1])
plot!(x2n[:,1])
# model = fitvp(sol,prob1)
#chain = sample(model, NUTS(0.25), MCMCThreads(),1000, 1)#,init_theta = [0.1, 0.5, 0.1])
chain = sample(model, NUTS(0.65),1000,init_theta = [1.0,0.1])
chainarray = Array(chain)
chainx = chainarray[:,3:202]
chainy = chainarray[:,203:end]
chainx_avg = mean(chainx,dims=1)[:]
chainy_avg = mean(chainy,dims=1)[:]
chainx_std = std(chainx,dims=1)[:]
chainy_std = std(chainy,dims=1)[:]
scatter(0:0.1:20,x1n[:,1],label="x data",xlabel="time in sec",ylabel="amplitude")
scatter!(0:0.1:20,x2n[:,1],label="y data")
plot!(0:0.1:20,x1[:,1],linewidth=2,ribbon=0.3,label="x")
plot!(0:0.1:20,x2[:,1],linewidth=2,ribbon=0.3,label="y")
savefig("VPdata.png")
scatter(0:0.1:20,x1n_sig[:,1],label="x sig data",xlabel="time in sec",ylabel="amplitude",linewidth=2)
scatter!(0:0.1:20,x2n_sig[:,1],label="y sig data",linewidth=2)
plot!(0:0.1:20,x1_sig[:,1],linewidth=2,ribbon=0.3,label="x")
plot!(0:0.1:20,x2_sig[:,1],linewidth=2,ribbon=0.3,label="y")
savefig("VPdatasig.png")
plot(0.1:0.1:20,chainx_avg,ribbon=chainx_std,label="x pred",xlabel="time in sec",ylabel="amplitude")
plot!(0.1:0.1:20,chainy_avg,ribbon=chainy_std,label="y pred")
savefig("VPpred.png")
model2 = fitvpEM(x1[:,1],x2[:,1])
chain2 = sample(model2, NUTS(0.65),2000)
plot(chain2)
savefig("ChainEM.png")
# ADVI
Turing.setadbackend(:reversediff)
Turing.setrdcache(true)
advi = ADVI(10, 1000)
setchunksize(8)
q = vi(model, advi)
# sampling
z = rand(q, 1000)
avg = vec(mean(z; dims = 2))
zstd = vec(std(z; dims = 2))
data_length = length(x1n[:,1])
chainx_advi_mean = avg[3:data_length+1]
chainy_advi_mean = avg[data_length+2:end]
chainx_advi_std = zstd[3:data_length+1]
chainy_advi_std = zstd[data_length+2:end]
plot(time[2:end],chainx_advi_mean,ribbon=chainx_advi_std,label="x pred",xlabel="time in sec",ylabel="amplitude")
plot!(time[2:end],chainy_advi_mean,ribbon=chainy_advi_std,label="y pred")
savefig("VPpredsig.png")