-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtest_mitdb.py
141 lines (122 loc) · 4.78 KB
/
test_mitdb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
"""
cnn for 1-d signal data, pytorch version
Shenda Hong, Jan 2020
"""
import numpy as np
from collections import Counter
from tqdm import tqdm
from matplotlib import pyplot as plt
from sklearn.metrics import classification_report, confusion_matrix
from sklearn import preprocessing
import os
from imblearn.over_sampling import RandomOverSampler
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchsummaryX import summary
from resnet1d.resnet1d import MyDataset, ResNet1D
def label2index(i):
m = {'N':0, 'S':1, 'V':2, 'F':3, 'Q':4} # uncomment for 5 classes
# m = {'N':0, 'S':0, 'V':1, 'F':0, 'Q':0} # uncomment for 2 classes
return m[i]
if __name__ == "__main__":
batch_size = 256
path = 'data/'
# read data
print('start')
data = np.load(os.path.join(path, 'mitdb_data.npy'))
label_str = np.load(os.path.join(path, 'mitdb_group.npy'))
label = np.array([label2index(i) for i in label_str])
# make data
train_ind = np.load(os.path.join(path, 'mitdb_train_ind.npy'))
test_ind = np.load(os.path.join(path, 'mitdb_test_ind.npy'))
data = preprocessing.scale(data, axis=1)
X_train = data[train_ind]
X_test = data[test_ind]
Y_train = label[train_ind]
Y_test = label[test_ind]
print(X_train.shape, Counter(Y_train))
print(X_test.shape, Counter(Y_test))
ros = RandomOverSampler(random_state=0)
X_train, Y_train = ros.fit_resample(X_train, Y_train)
print(X_train.shape, Counter(Y_train))
print(np.max(X_train), np.min(X_train))
# for i in range(20):
# plt.figure()
# idx = np.random.randint(X_train.shape[0])
# title = '{}_{}'.format(Y_train[idx], idx)
# plt.plot(X_train[idx])
# plt.title(title)
# plt.savefig('img/{0}.png'.format(title))
# exit()
# prepare loader
shuffle_idx = np.random.permutation(list(range(X_train.shape[0])))
X_train = X_train[shuffle_idx]
Y_train = Y_train[shuffle_idx]
X_train = np.expand_dims(X_train, 1)
X_test = np.expand_dims(X_test, 1)
dataset = MyDataset(X_train, Y_train)
dataset_test = MyDataset(X_test, Y_test)
dataloader = DataLoader(dataset, batch_size=batch_size, drop_last=False, shuffle=False)
dataloader_test = DataLoader(dataset_test, batch_size=batch_size, drop_last=False, shuffle=False)
# make model
device_str = "cuda:5"
device = torch.device(device_str if torch.cuda.is_available() else "cpu")
print(device)
model = ResNet1D(
in_channels=1,
base_filters=128,
kernel_size=16,
stride=2,
groups=8,
n_block=8,
n_classes=len(np.unique(Y_train)),
downsample_gap=2,
increasefilter_gap=4,
use_do=False)
summary(model, torch.zeros(1, 1, 360))
model.to(device)
# train and test
optimizer = optim.Adam(model.parameters(), lr=1e-3, weight_decay=1e-4)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10)
loss_func = torch.nn.CrossEntropyLoss()
n_epoch = 30
step = 0
prev_f1 = 0
for _ in tqdm(range(n_epoch), desc="epoch", leave=False):
# train
model.train()
prog_iter = tqdm(dataloader, desc="Training", leave=False)
all_pred_prob_train = []
for batch_idx, batch in enumerate(prog_iter):
model.train()
input_x, input_y = tuple(t.to(device) for t in batch)
pred = model(input_x)
all_pred_prob_train.append(pred.cpu().data.numpy())
loss = loss_func(pred, input_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
step += 1
# test
if batch_idx % 300 == 0:
print(loss.item())
model.eval()
prog_iter_test = tqdm(dataloader_test, desc="Testing", leave=False)
all_pred_prob = []
with torch.no_grad():
for batch_idx, batch in enumerate(prog_iter_test):
input_x, input_y = tuple(t.to(device) for t in batch)
pred = model(input_x)
all_pred_prob.append(pred.cpu().data.numpy())
all_pred_prob = np.concatenate(all_pred_prob)
all_pred = np.argmax(all_pred_prob, axis=1)
print(classification_report(Y_test, all_pred))
print(confusion_matrix(Y_test, all_pred))
scheduler.step(_)
all_pred_prob_train = np.concatenate(all_pred_prob_train)
all_pred_train = np.argmax(all_pred_prob_train, axis=1)
print(classification_report(Y_train, all_pred_train))
print(confusion_matrix(Y_train, all_pred_train))