-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprobability_extraction.py
220 lines (172 loc) · 7.1 KB
/
probability_extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
data_transforms = {
'train': transforms.Compose([
transforms.Resize((224,224)),
transforms.ToTensor(),
transforms.Normalize(mean, std)
]),
'val': transforms.Compose([
transforms.Resize((224,224)),
transforms.ToTensor(),
transforms.Normalize(mean, std)
]),
}
data_dir = "data"
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
data_transforms[x])
for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=16,
shuffle=True, num_workers=10)
for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
num_classes = len(class_names)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(class_names)
def imshow(inp, title):
"""Imshow for Tensor."""
inp = inp.numpy().transpose((1, 2, 0))
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.imshow(inp)
plt.title(title)
plt.show()
# Get a batch of training data
inputs, classes = next(iter(dataloaders['train']))
# Make a grid from batch
out = torchvision.utils.make_grid(inputs)
imshow(out, title=[class_names[x] for x in classes])
def plot(val_loss,train_loss,typ):
plt.title("{} after epoch: {}".format(typ,len(train_loss)))
plt.xlabel("Epoch")
plt.ylabel(typ)
plt.plot(list(range(len(train_loss))),train_loss,color="r",label="Train "+typ)
plt.plot(list(range(len(val_loss))),val_loss,color="b",label="Validation "+typ)
plt.legend()
plt.savefig(os.path.join(data_dir,typ+".png"))
plt.close()
val_loss_gph=[]
train_loss_gph=[]
val_acc_gph=[]
train_acc_gph=[]
def train_model(model, criterion, optimizer, scheduler, num_epochs=25,model_name = "kaggle"):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch+1, num_epochs))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1) #was (outputs,1) for non-inception and (outputs.data,1) for inception
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
optimizer.zero_grad()
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
if phase == 'train':
train_loss_gph.append(epoch_loss)
train_acc_gph.append(epoch_acc)
if phase == 'val':
val_loss_gph.append(epoch_loss)
val_acc_gph.append(epoch_acc)
plot(val_loss_gph,train_loss_gph, "Loss")
plot(val_acc_gph,train_acc_gph, "Accuracy")
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_acc >= best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
torch.save(model, data_dir+"/"+model_name+".h5")
print('==>Model Saved')
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model
model = models.vgg11(pretrained = True)
#num_ftrs = model.fc.in_features ##for wideresnet-50-2
num_ftrs = model.classifier[0].in_features ## for vgg11
print("Number of features: "+str(num_ftrs))
# Here the size of each output sample is set to 2.
#model.fc = nn.Linear(num_ftrs, num_classes) ## for wideresnet-50-2
model.classifier = nn.Linear(num_ftrs, num_classes) ## for vgg11
model = model.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that all parameters are being optimized
optimizer = optim.SGD(model.parameters(), lr=0.001)
# StepLR Decays the learning rate of each parameter group by gamma every step_size epochs
# Decay LR by a factor of 0.1 every 7 epochs
# Learning rate scheduling should be applied after optimizer’s update
# e.g., you should write your code this way:
# for epoch in range(100):
# train(...)
# validate(...)
# scheduler.step()
step_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size = 10, gamma=0.1)
model = train_model(model, criterion, optimizer, step_lr_scheduler, num_epochs=50, model_name = "vgg11")
# Getting Proba distribution
print("\nGetting the Probability Distribution")
testloader=torch.utils.data.DataLoader(image_datasets['val'],batch_size=1)
model=model.eval()
correct = 0
total = 0
import csv
import numpy as np
f = open(data_dir+"/vgg19.csv",'w+',newline = '')
writer = csv.writer(f)
with torch.no_grad():
num = 0
temp_array = np.zeros((len(testloader),num_classes))
for data in testloader:
images, labels = data
labels=labels.cuda()
outputs = model(images.cuda())
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels.cuda()).sum().item()
prob = torch.nn.functional.softmax(outputs, dim=1)
temp_array[num] = np.asarray(prob[0].tolist()[0:num_classes])
num+=1
print("Accuracy = ",100*correct/total)
for i in range(len(testloader)):
writer.writerow(temp_array[i].tolist())
f.close()