-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
125 lines (100 loc) · 4.78 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#!/usr/bin/env python3
"""
Copyright (c) 2018 Intel Corporation.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
import os
import sys
import logging as log
from openvino.inference_engine import IENetwork, IECore
class Network:
"""
Load and configure inference plugins for the specified target devices
and performs synchronous and asynchronous modes for the specified infer requests.
"""
def __init__(self):
### TODO: Initialize any class variables desired ###
self.plugin = None
self.network = None
self.input_blob = None
self.img_info_blob = None
self.output_blob = None
self.exec_network = None
self.infer_request = None
def load_model(self, model, device="MYRIAD", cpu_extension=None):
### TODO: Load the model ###
### TODO: Check for supported layers ###
### TODO: Add any necessary extensions ###
### TODO: Return the loaded inference plugin ###
### Note: You may need to update the function parameters. ###
model_xml = model
model_bin = os.path.splitext(model_xml)[0] + ".bin"
# Initialize the plugin
self.plugin = IECore()
# Add a CPU extension, if applicable
if cpu_extension and "CPU" in device:
self.plugin.add_extension(cpu_extension, device)
# Read the IR as a IENetwork
self.network = IENetwork(model=model_xml, weights=model_bin)
# Load the IENetwork into the plugin
# This is my experimental on HETERO plugin only using MYRIAD
if "HETERO" in device:
devices = self.plugin.available_devices
devices = [d for d in devices if "MYRIAD" in d]
devices = ','.join(devices)
devices = 'HETERO:' + devices
self.exec_network = self.plugin.load_network(self.network, devices)
else:
self.exec_network = self.plugin.load_network(self.network, device)
# Get the output layer
self.output_blob = next(iter(self.network.outputs))
return
def get_input_blob_name(self):
# Get all possible input layer
for blob_name in self.network.inputs:
if len(self.network.inputs[blob_name].shape) == 4:
self.input_blob = blob_name
elif len(self.network.inputs[blob_name].shape) == 2:
self.img_info_blob = blob_name
else:
raise RuntimeError("Unsuppored input layer dimension. Only 2D and 4D input layers are supported")
return self.input_blob, self.img_info_blob
def get_input_shape(self):
### TODO: Return the shape of the input layer ###
# Do some modification to handle 2 input for model Faster RCNN like
if self.img_info_blob:
return self.network.inputs[self.input_blob].shape, self.network.inputs[self.img_info_blob].shape
else:
return self.network.inputs[self.input_blob].shape
# def exec_net(self, image):
def exec_net(self, input_dict):
### TODO: Start an asynchronous request ###
### TODO: Return any necessary information ###
### Note: You may need to update the function parameters. ###
# Update input to handle dictionary parameters.
return self.exec_network.start_async(request_id=0, inputs=input_dict)
def wait(self):
### TODO: Wait for the request to be complete. ###
### TODO: Return any necessary information ###
### Note: You may need to update the function parameters. ###
status = self.exec_network.requests[0].wait(-1)
return status
def get_output(self):
### TODO: Extract and return the output results
### Note: You may need to update the function parameters. ###
return self.exec_network.requests[0].outputs[self.output_blob]