-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
589 lines (478 loc) · 26.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# convnext_LICENSE.txt file in the root directory of this source tree.
import datetime
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import time
import torch
import torch.backends.cudnn as cudnn
import torchvision
import json
import os
from pathlib import Path
from timm.data.mixup import Mixup
from timm.models import create_model
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from timm.utils import ModelEma
from optim_factory import create_optimizer, LayerDecayValueAssigner
from datasets import build_dataset
from engine import train_one_epoch, evaluate, evaluate_consistency_metrics, evaluate_benchmark
from utils import NativeScalerWithGradNormCount as NativeScaler
import utils
from utils import get_args, get_model
from shift_eval import evaluate_fraction_adversarial_shift_metrics, evaluate_full_adversarial_shift_metrics, \
evaluate_adversarial_crop_shift_metrics, evaluate_random_shift_metrics
try:
import wandb
except ImportError:
wandb = None
raise ImportError(
"To use the Weights and Biases Logger please install wandb."
"Run `pip install wandb` to install it."
)
def main(args):
utils.init_distributed_mode(args)
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
print("build datasets:")
dataset_train, args.nb_classes = build_dataset(is_train=True, args=args)
if args.disable_eval:
args.dist_eval = False
dataset_val = None
else:
dataset_val, _ = build_dataset(is_train=False, args=args)
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
if global_rank == 0 and args.enable_wandb:
# added to support wandb sweep
run = wandb.init(
project=args.project,
config=args,
name=args.wandb_name,
group=args.wandb_group
)
args = wandb.config
print("wandb.config args: ", args)
wandb_logger = utils.WandbLogger(args)
else:
wandb_logger = None
print(f"dataset_train: \n{dataset_train}\n dataset_val: \n{dataset_val}\n nb_classes: {args.nb_classes}")
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True, seed=args.seed,
)
print("Sampler_train = %s" % str(sampler_train))
if args.dist_eval:
if len(dataset_val) % num_tasks != 0:
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
sampler_val = torch.utils.data.DistributedSampler(
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False)
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
if global_rank == 0 and args.log_dir is not None:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = utils.TensorboardLogger(log_dir=args.log_dir)
else:
log_writer = None
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
if dataset_val is not None:
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=int(args.batch_size),
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False
)
else:
data_loader_val = None
mixup_fn = None
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
if mixup_active:
print("Mixup is activated!")
mixup_fn = Mixup(
mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
label_smoothing=args.smoothing, num_classes=args.nb_classes)
total_batch_size = args.batch_size * args.update_freq * utils.get_world_size()
num_training_steps_per_epoch = len(dataset_train) // total_batch_size
total_training_steps = num_training_steps_per_epoch * args.epochs
print("LR = %.8f" % args.lr)
print("Batch size = %d" % total_batch_size)
print("Update frequent = %d" % args.update_freq)
print("Number of training examples = %d" % len(dataset_train))
print("Number of training training per epoch = %d" % num_training_steps_per_epoch)
print("Number of total training steps = %d" % total_training_steps)
model = get_model(args, total_steps=total_training_steps)
# sample inputs
matplotlib.use('Agg') # turn off gui - use on dgx cluster
for loader, name in [(data_loader_train, 'train'), (data_loader_val, 'val')]:
sample = next(iter(loader))[0]
sample = sample[:12] if sample.shape[0] > 12 else sample
sample = sample.permute(0, 2, 3, 1).cpu().numpy()
fig, axs = plt.subplots(4, 3, figsize=(12, 9))
axs = axs.flatten()
for img, ax in zip(sample, axs):
ax.imshow(img)
fig.suptitle(f'{name} sample')
if args.output_dir:
plt.savefig(os.path.join(args.output_dir, f'{name}_sample.png'))
else:
plt.show()
# Profiler analysis
if args.profiler:
from utils import profiler_test
print("run profiler")
profiler_test(model, args)
# Wandb watch model
if global_rank == 0 and args.enable_wandb and wandb is not None:
wandb.watch(model, criterion=None, log="all", log_freq=1000, idx=None, log_graph=False)
if args.finetune:
if args.finetune.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.finetune, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.finetune, map_location='cpu')
print("Load ckpt from %s" % args.finetune)
checkpoint_model = None
for model_key in args.model_key.split('|'):
if model_key in checkpoint:
checkpoint_model = checkpoint[model_key]
print("Load state_dict by model_key = %s" % model_key)
break
if checkpoint_model is None:
checkpoint_model = checkpoint
state_dict = model.state_dict()
for k in ['head.weight', 'head.bias']:
if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
print(f"Removing key {k} from pretrained checkpoint")
del checkpoint_model[k]
utils.load_state_dict(model, checkpoint_model, prefix=args.model_prefix)
model.to(device)
model_ema = None
if args.model_ema:
# Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper
model_ema = ModelEma(
model,
decay=args.model_ema_decay,
device='cpu' if args.model_ema_force_cpu else '',
resume='')
print("Using EMA with decay = %.8f" % args.model_ema_decay)
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Model = %s" % str(model_without_ddp))
print('number of params:', n_parameters)
if args.layer_decay < 1.0 or args.layer_decay > 1.0:
num_layers = 12 # convnext layers divided into 12 parts, each with a different decayed lr value.
assert args.model in ['convnext_small', 'convnext_base', 'convnext_large', 'convnext_xlarge'], \
"Layer Decay impl only supports convnext_small/base/large/xlarge"
assigner = LayerDecayValueAssigner(list(args.layer_decay ** (num_layers + 1 - i) for i in range(num_layers + 2)))
else:
assigner = None
if assigner is not None:
print("Assigned values = %s" % str(assigner.values))
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=False)
model_without_ddp = model.module
optimizer = create_optimizer(
args, model_without_ddp, skip_list=None,
get_num_layer=assigner.get_layer_id if assigner is not None else None,
get_layer_scale=assigner.get_scale if assigner is not None else None)
loss_scaler = NativeScaler() # if args.use_amp is False, this won't be used
lr_schedule_values = utils.get_lr_scheduler(num_training_steps_per_epoch, args)
if args.weight_decay_end is None:
# solve wandb bug
try:
args.update({'weight_decay_end': args.weight_decay}, allow_val_change=True)
except:
args.weight_decay_end = args.weight_decay
wd_schedule_values = utils.cosine_scheduler(
args.weight_decay, args.weight_decay_end, args.epochs, num_training_steps_per_epoch)
print("Max WD = %.7f, Min WD = %.7f" % (max(wd_schedule_values), min(wd_schedule_values)))
if mixup_fn is not None:
# smoothing is handled with mixup label transform
criterion = SoftTargetCrossEntropy()
elif args.smoothing > 0.:
criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
else:
criterion = torch.nn.CrossEntropyLoss()
print("criterion = %s" % str(criterion))
utils.auto_load_model(
args=args, model=model, model_without_ddp=model_without_ddp,
optimizer=optimizer, loss_scaler=loss_scaler, model_ema=model_ema)
if args.eval:
print(f"Eval only mode")
test_stats = evaluate(data_loader_val, model, device, use_amp=args.use_amp)
consistency_stats = evaluate_consistency_metrics(data_loader_val, model, device, use_amp=args.use_amp, max_shift=args.max_shift)
print(f"Accuracy of the network on {len(dataset_val)} test images: {test_stats['acc1']:.5f}%")
if wandb_logger:
log_stats = {**{f'test_{k}': v for k, v in test_stats.items()},
**{f'test_consistency_{k}': v for k, v in consistency_stats.items()},
'epoch': 0,
'n_parameters': n_parameters}
wandb_logger.log_epoch_metrics(log_stats)
return
if args.eval_imagenet_c:
# eval imagenet
test_stats = evaluate(data_loader_val, model, device, use_amp=args.use_amp)
consistency_stats = evaluate_consistency_metrics(data_loader_val, model, device, use_amp=args.use_amp,
max_shift=args.max_shift)
print(f"Accuracy of the network on {len(dataset_val)} test images: {test_stats['acc1']:.5f}%")
log_stats = {**{f'test_{k}': v for k, v in test_stats.items()},
**{f'test_consistency_{k}': v for k, v in consistency_stats.items()},
'epoch': 0,
'n_parameters': n_parameters}
# eval imagenet-c
distortions = [
'gaussian_noise', 'shot_noise', 'impulse_noise',
'defocus_blur', 'glass_blur', 'motion_blur', 'zoom_blur',
'snow', 'frost', 'fog', 'brightness',
'contrast', 'elastic_transform', 'pixelate', 'jpeg_compression',
'speckle_noise', 'gaussian_blur', 'spatter', 'saturate'
]
imagenet_c_mean = [0.485, 0.456, 0.406]
imagenet_c_std = [0.229, 0.224, 0.225]
error_rates = []
for distortion_name in distortions:
distortion_errs = []
for severity in range(1, 6):
distortion = distortion_name + '/' + str(severity)
print("evaluating distortion: ", distortion)
distorted_dataset = torchvision.datasets.ImageFolder(
root=args.imagenet_c_path + distortion_name + '/' + str(severity),
transform=torchvision.transforms.Compose([torchvision.transforms.CenterCrop(224),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(imagenet_c_mean, imagenet_c_std)]))
if args.dist_eval:
if len(dataset_val) % num_tasks != 0:
print(
'Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
sampler_val = torch.utils.data.DistributedSampler(
distorted_dataset, num_replicas=num_tasks, rank=global_rank, shuffle=False)
else:
sampler_val = torch.utils.data.SequentialSampler(distorted_dataset)
distorted_dataset_loader = torch.utils.data.DataLoader(
distorted_dataset, sampler=sampler_val, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers,
pin_memory=True)
distorted_consistency_stats = evaluate_consistency_metrics(distorted_dataset_loader, model, device,
use_amp=args.use_amp,
max_shift=args.max_shift)
distortion_errs.append(1 - distorted_consistency_stats['acc1'] / 100)
log_stats.update({
**{f'test_{distortion}_consistency_{k}': v for k, v in distorted_consistency_stats.items()}})
print(json.dumps(log_stats, indent=4))
print('\n=Average', tuple(distortion_errs))
distortion_rate = np.mean(distortion_errs)
error_rates.append(distortion_rate)
print('Distortion: {:15s} | CE (unnormalized) (%): {:.2f}'.format(distortion, 100 * distortion_rate))
if wandb_logger:
wandb_logger.log_epoch_metrics(log_stats)
print('mCE (unnormalized by AlexNet errors) (%): {:.2f}'.format(100 * np.mean(error_rates)))
with open(os.path.join(args.output_dir, f'imagenet_c_results.json'), "w") as outfile:
json.dump(log_stats, outfile, indent=4)
return
if args.eval_adversarial_shift_metrics:
if args.eval_imagenet_c_adversarial_shift:
imagenet_c_mean = [0.485, 0.456, 0.406]
imagenet_c_std = [0.229, 0.224, 0.225]
distorted_dataset = torchvision.datasets.ImageFolder(
root=os.path.join(args.imagenet_c_path, args.imagenet_c_distortion + '/' + str(args.imagenet_c_severity)),
transform=torchvision.transforms.Compose([torchvision.transforms.CenterCrop(224),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(imagenet_c_mean,
imagenet_c_std)]))
# assert not args.dist_eval
if args.dist_eval:
if len(distorted_dataset) % num_tasks != 0:
print(
'Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
sampler_val = torch.utils.data.DistributedSampler(
distorted_dataset, num_replicas=num_tasks, rank=global_rank, shuffle=False)
else:
sampler_val = torch.utils.data.SequentialSampler(distorted_dataset)
data_loader_val = torch.utils.data.DataLoader(
distorted_dataset, sampler=sampler_val, batch_size=args.batch_size, shuffle=False,
num_workers=args.num_workers,
pin_memory=True)
test_stats = {}
if args.adversarial_method == 'integer_rand10':
test_stats = evaluate_full_adversarial_shift_metrics(data_loader_val, model, device, use_amp=False, max_shift=32,
half_shift=False, random_shifts=10)
log_stats = {**{f'test_integer_rand10_adversarial_{k}': v for k, v in test_stats.items()},
'epoch': 0,
'n_parameters': n_parameters}
if args.adversarial_method == 'integer':
test_stats = evaluate_full_adversarial_shift_metrics(data_loader_val, model, device, use_amp=False, max_shift=32,
half_shift=False)
log_stats = {**{f'test_integer_adversarial_{k}': v for k, v in test_stats.items()},
'epoch': 0,
'n_parameters': n_parameters}
if args.adversarial_method == 'full':
test_stats = evaluate_full_adversarial_shift_metrics(data_loader_val, model, device, use_amp=False, max_shift=32,
half_shift=True)
log_stats = {**{f'test_full_adversarial_{k}': v for k, v in test_stats.items()},
'epoch': 0,
'n_parameters': n_parameters}
elif args.adversarial_method == 'fraction':
max_up = args.fraction_adversarial_max_up
test_stats = evaluate_fraction_adversarial_shift_metrics(data_loader_val, model, device, use_amp=False, max_up=max_up)
log_stats = {**{f'test_fraction_adversarial_{k}': v for k, v in test_stats.items()},
'epoch': 0,
'n_parameters': n_parameters}
if wandb_logger:
wandb_logger.log_epoch_metrics(log_stats)
return
if args.eval_rand_shift:
up = args.eval_rand_shift_up
up_method = args.eval_rand_shift_up_method
res = evaluate_random_shift_metrics(data_loader_val, model, device, use_amp=False, max_shift=32, up=up,
up_method=up_method)
log_stats = {**{f'test_eval_rand_shift_{up_method}_{up}_{k}': v for k, v in res.items()},
'epoch': 0,
'n_parameters': n_parameters}
print(log_stats)
if wandb_logger:
wandb_logger.log_epoch_metrics(log_stats)
return
if args.eval_crop_shift is not None:
consistency_stats = evaluate_adversarial_crop_shift_metrics(data_loader_val, model, device, inp_size=args.input_size,
max_shift=args.eval_crop_shift, use_amp=False)
if wandb_logger:
log_stats = {**{f'test_{k}': v for k, v in consistency_stats.items()},
'epoch': 0,
'n_parameters': n_parameters}
print(log_stats)
wandb_logger.log_epoch_metrics(log_stats)
return
if args.eval_benchmark:
evaluate_benchmark(data_loader_val, model, device, args.use_amp)
return
max_accuracy = 0.0
if args.model_ema and args.model_ema_eval:
max_accuracy_ema = 0.0
print("Start training for %d epochs" % args.epochs)
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
if log_writer is not None:
log_writer.set_step(epoch * num_training_steps_per_epoch * args.update_freq)
if wandb_logger:
wandb_logger.set_steps()
train_stats = train_one_epoch(
model, criterion, data_loader_train, optimizer,
device, epoch, loss_scaler, args.clip_grad, model_ema, mixup_fn,
log_writer=log_writer, wandb_logger=wandb_logger, start_steps=epoch * num_training_steps_per_epoch,
lr_schedule_values=lr_schedule_values, wd_schedule_values=wd_schedule_values,
num_training_steps_per_epoch=num_training_steps_per_epoch, update_freq=args.update_freq,
use_amp=args.use_amp
)
if args.output_dir and args.save_ckpt:
if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs:
utils.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, model_ema=model_ema)
if data_loader_val is not None:
test_stats = evaluate(data_loader_val, model, device, use_amp=args.use_amp)
print(f"Accuracy of the model on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
if max_accuracy < test_stats["acc1"]:
max_accuracy = test_stats["acc1"]
if args.output_dir and args.save_ckpt:
utils.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch="best", model_ema=model_ema)
print(f'Max accuracy: {max_accuracy:.2f}%')
if log_writer is not None:
log_writer.update(test_acc1=test_stats['acc1'], head="perf", step=epoch)
log_writer.update(test_acc5=test_stats['acc5'], head="perf", step=epoch)
log_writer.update(test_loss=test_stats['loss'], head="perf", step=epoch)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
# repeat testing routines for EMA, if ema eval is turned on
if args.model_ema and args.model_ema_eval:
test_stats_ema = evaluate(data_loader_val, model_ema.ema, device, use_amp=args.use_amp)
print(f"Accuracy of the model EMA on {len(dataset_val)} test images: {test_stats_ema['acc1']:.1f}%")
if max_accuracy_ema < test_stats_ema["acc1"]:
max_accuracy_ema = test_stats_ema["acc1"]
if args.output_dir and args.save_ckpt:
utils.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch="best-ema", model_ema=model_ema)
print(f'Max EMA accuracy: {max_accuracy_ema:.2f}%')
if log_writer is not None:
log_writer.update(test_acc1_ema=test_stats_ema['acc1'], head="perf", step=epoch)
log_stats.update({**{f'test_{k}_ema': v for k, v in test_stats_ema.items()}})
if epoch % 10 == 0:
# shift consistency metrics
consistency_stats = evaluate_consistency_metrics(data_loader_val, model, device, use_amp=args.use_amp,
max_shift=args.max_shift)
log_stats.update(**{f'test_consistency_{k}': v for k, v in consistency_stats.items()})
else:
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and utils.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
if wandb_logger:
wandb_logger.log_epoch_metrics(log_stats)
if wandb_logger and args.wandb_ckpt and args.save_ckpt and args.output_dir:
wandb_logger.log_checkpoints()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
print("load and evaluate best model")
from utils import load_model_state_dict
output_dir = Path(args.output_dir)
checkpoint_path = os.path.join(output_dir, 'checkpoint-best.pth')
checkpoint = torch.load(checkpoint_path, map_location='cpu')
model_without_ddp = load_model_state_dict(model_without_ddp, checkpoint['model'])
if hasattr(args, 'model_ema') and args.model_ema:
if 'model_ema' in checkpoint.keys():
model_ema.ema = load_model_state_dict(model_ema.ema, checkpoint['model_ema'])
test_stats = evaluate(data_loader_val, model, device, use_amp=args.use_amp)
consistency_stats = evaluate_consistency_metrics(data_loader_val, model, device, use_amp=args.use_amp,
max_shift=args.max_shift)
log_stats = {**{f'best_model_test{k}': v for k, v in test_stats.items()},
**{f'best_model_test_consistency_{k}': v for k, v in consistency_stats.items()},
'epoch': 0,
'n_parameters': n_parameters}
print(f"Accuracy of the network on {len(dataset_val)} test images: {test_stats['acc1']:.5f}%")
if hasattr(args, 'model_ema') and args.model_ema:
checkpoint_path = os.path.join(output_dir, 'checkpoint-best-ema.pth')
checkpoint = torch.load(checkpoint_path, map_location='cpu')
model_ema.ema = load_model_state_dict(model_ema.ema, checkpoint['model_ema'])
test_stats_ema = evaluate(data_loader_val, model_ema.ema, device, use_amp=args.use_amp)
log_stats.update({**{f'best_model_test_{k}_ema': v for k, v in test_stats_ema.items()}})
log_stats = {**{f'best_model_ema_test_{k}': v for k, v in test_stats.items()},
**{f'best_model_ema_test_consistency_{k}': v for k, v in consistency_stats.items()},
'epoch': 0,
'n_parameters': n_parameters}
print(log_stats)
if wandb_logger:
wandb_logger.log_epoch_metrics(log_stats)
if __name__ == '__main__':
args = get_args()
main(args)