-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsummary.tex
1292 lines (1273 loc) · 72.5 KB
/
summary.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[10pt,landscape]{article}
\usepackage{multicol}
\usepackage{calc}
\usepackage{ifthen}
\usepackage{color,soul}
\usepackage{xcolor}
\usepackage{graphicx}
\usepackage[landscape]{geometry}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{hyperref}
\DeclareMathOperator{\Tr}{Tr}
% To make this come out properly in landscape mode, do one of the following
% 1.
% pdflatex latexsheet.tex
%
% 2.
% latex latexsheet.tex
% dvips -P pdf -t landscape latexsheet.dvi
% ps2pdf latexsheet.ps
% If you're reading this, be prepared for confusion. Making this was
% a learning experience for me, and it shows. Much of the placement
% was hacked in; if you make it better, let me know...
% 2008-04
% Changed page margin code to use the geometry package. Also added code for
% conditional page margins, depending on paper size. Thanks to Uwe Ziegenhagen
% for the suggestions.
% 2006-08
% Made changes based on suggestions from Gene Cooperman. <gene at ccs.neu.edu>
% To Do:
% \listoffigures \listoftables
% \setcounter{secnumdepth}{0}
% This sets page margins to .5 inch if using letter paper, and to 1cm
% if using A4 paper. (This probably isn't strictly necessary.)
% If using another size paper, use default 1cm margins.
\ifthenelse{\lengthtest { \paperwidth = 11in}}
{ \geometry{top=.2in,left=.2in,right=.2in,bottom=.2in} }
{\ifthenelse{ \lengthtest{ \paperwidth = 297mm}}
{\geometry{top=0cm,left=0cm,right=0cm,bottom=0cm} }
{\geometry{top=0cm,left=0cm,right=0cm,bottom=0cm} }
}
% Turn off header and footer
\pagestyle{empty}
% Redefine section commands to use less space
\makeatletter
\renewcommand{\section}{\@startsection{section}{1}{0mm}%
{-1ex plus -.5ex minus -.2ex}%
{0.5ex plus .2ex}%x
{\normalfont\large\bfseries}}
\renewcommand{\subsection}{\@startsection{subsection}{2}{0mm}%
{-1explus -.5ex minus -.2ex}%
{0.5ex plus .2ex}%
{\normalfont\normalsize\bfseries}}
\renewcommand{\subsubsection}{\@startsection{subsubsection}{3}{0mm}%
{-1ex plus -.5ex minus -.2ex}%
{1ex plus .2ex}%
{\normalfont\small\bfseries}}
\makeatother
% Define BibTeX command
\def\BibTeX{{\rm B\kern-.05em{\sc i\kern-.025em b}\kern-.08em
T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}}
% Don't print section numbers
\setcounter{secnumdepth}{0}
\setlength{\parindent}{0pt}
\setlength{\parskip}{0pt plus 0.5ex}
% -----------------------------------------------------------------------
\begin{document}
\footnotesize
\begin{multicols*}{3}
\hl{\textbf{Introduction}}\\
\fbox{\begin{minipage}{\linewidth}
- quintessential example of a representation learning algorithm is the \textbf{auto-encoder}. An auto-encoder is the combination of an encoder function, which converts the input data into a diffeernt representation, and a decoder function, which converts the new representation back into the oirginal format.\newline
- \textbf{factor of variation}: separate sources of influence. In speech analysis, e.g. speaker's age, sex, accent, words they are speaking.\newline
- quintessential example of deep learning model is the \textbf{feedforward network or multi-layer perceptron (MLP)}. A MLP is just a mathematical function mapping some set of input values to output values.
\end{minipage}}
\hl{\textbf{Linear Algebra}}\\
tensor = array with more than two axes \newline
element-wise or Hadamard product, denoted as $\mathbf{A} \circ \mathbf{B}$ \newline
\fbox{\begin{minipage}{\linewidth}
\textbf{Determinant:} \\
maps matrices to real scalars \\
determinant = product of all eigenvalues \\
abs(det(A)) = a measure of how much multiplication by the matrix expands or contracts space
\end{minipage}}
\hl{\textbf{Probability and Information Theory}}\\
Marginal probability (Sum rule):\\
\fbox{\begin{minipage}{\linewidth}
$P(\text{x}=x) = \sum_y P(\text{x}=x,\text{y}=y)$, or
$p(x) =\int p(x,y)dy$
\end{minipage}}
Conditional probability \\
\fbox{\begin{minipage}{\linewidth}
$P(\text{y}=y|\text{x}=x)=\frac{P(\text{y}=y,\text{x}=x)}{P(\text{x}=x)}$
\end{minipage}}
Chain/Product rule of conditional probabilites \\
\fbox{\begin{minipage}{\linewidth}
$P(x^{(1)},...,x^{(n)})=P(x^{(1)})\prod_{i=1}^n P(x^{(i)}|x^{(1)},...,x^{(i-1)})$
\end{minipage}}
Expected Value\\
\fbox{\begin{minipage}{\linewidth}
The expected value of some function $f(x)$ with respect to a probability distribution $P(x)$ is the mean value that $f$ takes on when $x$ is drawn from $P$:\\
$E_{x\sim P} [f(x)]=\sum_x P(x)f(x)$ or
$E_{x\sim p} [f(x)]=\int p(x)f(x) dx$
\end{minipage}}
Variance\\
\fbox{\begin{minipage}{\linewidth}
$Var(f(x))=E[(f(x)-E[f(x)])^2]$
\end{minipage}}
Important identities\\
\fbox{\begin{minipage}{\linewidth}
$\sigma(x)=\frac{\exp(x)}{\exp(x)+\exp(0)}$\\
$\frac{d}{dx}\sigma(x)=\sigma(x)(1-\sigma(x))$\\
$1-\sigma(x)=\sigma(-x)$\\
$\log(\sigma(x))=\zeta(-x)$\\
$\frac{d}{dx}\zeta(x)=\sigma(x)$\\
$\sigma^{-1}(x)=\log\left(\frac{x}{1-x}\right)$\\
$\zeta^{-1}(x)=\log(\exp(x)-1)$\\
$\zeta(x)=\int_{-\infty}^x\sigma(y)dy$\\
$\zeta(x)-\zeta(-x)=x$
\end{minipage}}
Information Theory\\
\fbox{\begin{minipage}{\linewidth}
Self-information:
$I(x)=-\log P(x)$ \\
Shannon entropy:
$H(x)= E_{x\sim P}[I(x)] = -E_{x\sim P}[\log P(x)]$\\
The Shannon entropy of a distribution is the expected ammount of information in an event drawn from that distribution. \\
Kullback-Leibler (KL) divergence: \\
$D_{KL}(P||Q)=E_{x\sim P}\left[\log\frac{P(x)}{Q(x)} \right] =E_{x\sim P}[\log P(x) - \log Q(x)]$ \\
Measure how different two distributions $P(x)$ and $Q(x)$ (over the same random variable $x$) are. \\
Not symmetric: $D_{KL}(P||Q)\neq D_{KL}(Q||P)$ \\
Cross-entropy: \\
$H(P,Q)=-E_{x \sim P} \log Q(x)=H(P)+D_{KL}(P||Q)$ \\
Minimizing the cross-entropy wrt $Q$ is equivalent to minimizing the KL divergence.
\end{minipage}}
\hl{\textbf{Numerical Computation}}\\
\fbox{\begin{minipage}{\linewidth}
Condition number: $\max_{i,j}\left|\frac{\lambda_i}{\lambda_j}\right|$\\
When the Hessian has a poor condition number, gradient descent performs poorly. This is because in one direction, the derivative increases rapidly, while in another direction, it increases slowly. Gradient descent is unaware of this change in the derivative. Poor condition number also makes choosing a good step size difficult.\\
\textbf{Hessian, Curvature:} With negative curvature, the cost function actually decreases faster than the gradient predicts. With no curvature, the gradient predict the decrease correctly. With positive curvature, the function decreases more slowly than expected. \newline
\textbf{Second derivative test:} \\
- Hessian positive definite (all EVs positive): local minimum \\
- Hessian negative definite (all Evs negative): local maximum \\
- At least one EV positive, at least one negative: saddle points \\
- All EVs same sign, at least one zero: inconclusive \\
\textbf{Lipschitz continuous}: $\forall \mathbf{x}, \forall\mathbf{y}, |f(\mathbf{x})-f(\mathbf{y})|\leq \mathcal{L}\|\mathbf{x-y}\|_2$ with Lipschitz constant $\mathcal{L}$.
\end{minipage}}
\hl{\textbf{Deep Feedforward Networks}}\\
%\fbox{\begin{minipage}{\linewidth}
%\end{minipage}}
%
\hl{\textbf{1.4: Elements of Computation}}\\
%
Mathematical abstraction of basic Neuron\\
\fbox{\begin{minipage}{\linewidth}
\includegraphics[width=\columnwidth]{images/neuron.png}
\end{minipage}}
%
Linear function\\
\fbox{\begin{minipage}{\linewidth}
\underline{Def.:} A function $f:\mathbf{R}^n\rightarrow\mathbf{R}$ is a linear function if:\\
$(1)\text{ }f(x+x')=f(x)+f(x'), (\forall x,x' \in \mathbf{R}^n)$\\
$(2)\text{ }f(\alpha x)=\alpha f(x), (\forall \alpha \in \mathbf{R})$
\end{minipage}}
%
\fbox{\begin{minipage}{\linewidth}
\underline{Proposition:} $f$ linear $\Leftrightarrow f(x)=w^\top x$ for some $w \in \mathbf{R}^n$.
\hrule
$\Leftarrow$ Properties of scalar product:\\
$(1)\text{ } f(x+x')=...=f(x)+f(x')$\\
$(2)\text{ } f(\alpha x)=...=\alpha f(x)$\\
$\Leftarrow$ Write $x=\sum_{i=1}^nx_i e_i$. Linearity implies:\\
$f(\mathbf{x})=\sum_{i=1}^nx_i f(e_i)$ identify $w_i:=f(e_i)$
\end{minipage}}
%
Hyperplane\\
\fbox{\begin{minipage}{\linewidth}
\underline{Def.:} A hyperplane is an affine subspace of co-dimension 1.
\end{minipage}}
%
Level set\\
\fbox{\begin{minipage}{\linewidth}
\underline{Def.:} The level sets of a fucntion $f:\mathbf{R}^n\rightarrow \mathbf{R}$ is a one-parametric family of sets defined as \\
$L_f(c):=\{x:f(x)=c\}=f^{-1}(c)\subseteq \mathbf{R}^n$
\end{minipage}}
%
Level sets of linear functions\\
\fbox{\begin{minipage}{\linewidth}
\underline{Def.:} Let $f:\mathbf{R}^n\rightarrow \mathbf{R}$ be linear, $f(x)=w^\top x +b$, then \\
$L_f(c)=\{x:w^\top x=c-b\}=\text{hyperplane} \perp w$
\end{minipage}}
%
Linear (affine) maps\\
\fbox{\begin{minipage}{\linewidth}
$F:\mathbf{R}^n\rightarrow\mathbf{R}^m$ with \\
$F(x)=\begin{pmatrix} f_1(x)\\ f_2(x) \\...\\ f_m(x)\end{pmatrix}
= \begin{pmatrix} w_1^\top x+b_1\\ w_2^\top x+b_2 \\...\\ w_m^\top x+b_m\end{pmatrix} = \begin{pmatrix} w_1^\top \\ w_2^\top \\ ... \\ w_m^\top \end{pmatrix} x + \begin{pmatrix} b_1\\ b_2 \\...\\ b_m\end{pmatrix}$
\end{minipage}}
%
Composition of linear maps\\
\fbox{\begin{minipage}{\linewidth}
\underline{Proposition:} Let $F_1,..,F_L$ be linear maps, then $F=F_L\circ \cdots \circ F_1$ is also a linear map. Proof: $F(\mathbf{x})=(\mathbf{W}_L ...(\mathbf{W}_2(\mathbf{W}_1 \mathbf{x}))...)=(\mathbf{W}_L ... \mathbf{W}_2 \mathbf{W}_1)\mathbf{x} =\mathbf{Wx}$ \\
- every $L$-level hierarchy collapses to one level \\
- note that $rank(F)\equiv dim(im(F))\leq\min_l rank(F_l)$\\
\textbf{Conclusion: Need to move beyond linearity!}
\end{minipage}}
%
\hl{\textbf{1.5: Approximation Theory}}\\
%
Ridge function\\
\fbox{\begin{minipage}{\linewidth}
\underline{Def. (Ridge function):} $f:\mathbf{R}^n\rightarrow\mathbf{R}$ is a ridge function, if it can be written as
$f(\mathbf{x})=\sigma(\mathbf{w}^\top \mathbf{x}+b)$ \\
- Limit set: $L_f(c)=\cup_{d\in\sigma^{-1}(c)}L_{\bar{f}}(d)$, \\if linear part of $f$ denoted by $\bar{f}(\mathbf{x})=\mathbf{w}^\top \mathbf{x}+b$\\
- If $\sigma$ is differentiable at $z=\mathbf{w}^\top\mathbf{x}+b$ then \\
$\nabla_x f \overset{\text{chain rule}}{=} \sigma'(z)\nabla_x\bar{f}=\sigma'(z)\mathbf{w}$
\end{minipage}}
%
\fbox{\begin{minipage}{\linewidth}
\underline{Theorem} Let $f:\mathbf{R}^n\rightarrow \mathbf{R}$ differentiable at $\mathbf{x}$. Then either $\nabla f(\mathbf{x})=0$ or $\nabla f(\mathbf{x})\perp L_f(f(\mathbf{x}))$.
\end{minipage}}
%
\fbox{\begin{minipage}{\linewidth}
\underline{Def. (Dense Subsets):} A function class $\mathcal{H} \subseteq C(\mathbf{R}^d)$ is dense in $C(\mathbf{R}^d)$ iff \\
$\forall f \in C(\mathbf{R}^d) \forall \epsilon > 0 \forall K \subset \mathbf{R}^d$, compact: \\
$\exists h \in \mathcal{H} s.t. \max_{\mathbf{x}\in K}|f(\mathbf{x})-h(\mathbf{x})|=\|f-h\|_{\infty, K}<\epsilon$ \\
\textbf{Conclusion: We cann approximate any continuous $f$ to arbitrary accuracy (on K) with a suitable member of $\mathcal{H}$.} \\
- uniform approximation on compacta (i.e. use of $\infty$-norm) \\
- $\sup \rightarrow \max$ (Bolzano-Weierstrass)
\end{minipage}}
%
%\clearpage
Universal Approximation with Ridge Functions\\
\fbox{\begin{minipage}{\linewidth}
\underline{Definitions:} Let $\sigma: \mathbf{R} \rightarrow \mathbf{R}$ be a scalar function \newline
$\mathcal{G}^n_\sigma := \{g:g(\mathbf{x})=\sigma(\mathbf{w}^\top \mathbf{x}+b)$ for some $\mathbf{w}\in \mathbf{R}^n, b\in\mathbf{R}\}$ \newline
$\mathcal{G}^n := \cup_{\sigma \in C(\mathbf{R})}\mathcal{G}^n_\sigma,$ universe of continuous ridge functions
%
\textbf{\underline{Theorem:} Vostrecov and Kreines, 1961}\\
$\mathcal{H}^n := $ span$(\mathcal{G}^n)$ is dense in $C(\mathbf{R}^n)$.
\end{minipage}}
%
Dimension Lifting Lemma (Pinkus)\\
\fbox{\begin{minipage}{\linewidth}
\underline{Lemma (Pinkus 1999):} The density of $\mathcal{H}^1_\sigma$ in $C(\mathbf{R})$ with \\$\mathcal{H}^1_\sigma :=\text{span}(\mathcal{G}^1_\sigma)=\text{span}\{\sigma(\lambda t +\theta): \lambda, \theta \in \mathbf{R} \}$\\ implies the density of\\
$\mathcal{H}^n_\sigma :=\text{span}(\mathcal{G}^1_\sigma)=\text{span}\{\sigma(\mathbf{w}^\top \mathbf{x} +b):\mathbf{w}\in\mathbf{R}^n, b \in \mathbf{R} \}$\\ in $C(\mathbf{R}^n)$ for any $n\geq 1$.\\
\textbf{Conclusion: We can lift density property of ridge function families from $C(\mathbf{R})$ to $C(\mathbf{R}^n)$.}\\
Proof:...
\end{minipage}}
%
\fbox{\begin{minipage}{\linewidth}
- Continuous functions can be well approximated by linear combinations of ridge functions (universal function approximation). \\
- Justifies use of computational units which apply a scalar non-linearity to a linear function of the inputs.
\end{minipage}}
%
\hl{\textbf{2.1: Rectification Networks}}\\
%
\fbox{\begin{minipage}{\linewidth}
\underline{Def.:} {\color{blue} Rectified linear unit (ReLU)} \\
$(x)_+ := \max(0,x),$ \\
$\partial(x)_+ = 1 (x>0), 0 (x<0), [0;1] (x=0)$\\
\underline{Def.:} {\color{blue} Absolute value rectification (AVU)} \\
$|x|:= x(x\geq0), -x ($otw.$),$\\$\partial|x|=1(x>0),[-1;1](x=0), -1 (x<0)$
\end{minipage}}
%
Shektman (1982)\\
\fbox{\begin{minipage}{\linewidth}
Any $f\in C[0;1]$ can be uniformly approximated to arbitrary precision by a polygonal line \end{minipage}}
%
Lebesgue (1898)\\
\fbox{\begin{minipage}{\linewidth}
A polygonal line with $m$ pieces can be written \\
\fbox{$g(x) = ax + b + \sum_{i=1} ^{m-1}c_i(x-x_i)_+$}\\
\fbox{$g(x) = a'x + b' + \sum_{i=1} ^{m-1}c_i'|x-x_i|$}\\
- knots: $0=x_0 < x_1 < \cdots <x_{m-1} < x_m = 1$ \\
- $m+1$ parameters $a,b,c_i \in \mathbf{R}$ \\
- ReLU function approximation in $1$D
\end{minipage}}
\fcolorbox{black}{green}{\begin{minipage}{\linewidth}
Proof (by induction over $m$): \\
$m=1:$ Linear function over $[0;1] \Rightarrow $ fit line with $a,b$\\
$m\Rightarrow m+1:$ Given $m+1$ knots and values ($x_j,y_j$). Eliminate knot $x_m$ and choose $a,b,$ and $c_i(i<m)$ to fit this function (induction hypothesis) \\
Now modify $c_{m-1}$ and choose $c_m$ to fit a wedge to the three points ($x_{m-1},y_{m-1}$), ($x_m,y_m$), and ($x_{x+1}=1,y_{m+1}$)
\end{minipage}}
%
\fbox{\begin{minipage}{\linewidth}
- Weierstrass: $C[0;1]$ functions can be uniformly approximated by polynomials \\
- Lebesgue: proof for Weierstrass theorem by showing that $|x|$ can be uniformly approximated on $[-1;1]$ by polynomials
\end{minipage}}
%
\fbox{\begin{minipage}{\linewidth}
\underline{Theorem:} Networks with one hidden layer of ReLU or AVU are universal function approximators
\end{minipage}}
\fcolorbox{black}{green}{\begin{minipage}{\linewidth}
1. Universally approximate $C(K)$ functions ($K$, compact) by polygonal lines \\
2. Represent polygonal lines by (linear function $+$) linear combinations of $(\cdot)_+$ or $|\cdot|$ functions.\\
3. Apply dimension lifting lemma to show density of the linear span of resulting ridge function families $\mathcal{G}^n_{(\cdot)_+}$ and $\mathcal{G}^n_{|\cdot|}$
\end{minipage}}
{Linear Combinations of Rectified Units} \\
\fbox{\begin{minipage}{\linewidth}
By linearly combining $m$ rectified units, into how many ($R(m)$) cells is $\mathbf{R}^n$ maximally partioned? (Zaslavsky, 1975)\\
$R(m) \leq \sum_{i=0}^{\min\{m,n\}} \begin{pmatrix} m \\ i \end{pmatrix}$ \\
- for $m\leq n$, $R(m)=2^m$ (exponential growth)\\
- for given $n$, asymptotically, $R(m)\in\Omega(m^n)$ (bounded by $m^n$),
i.e. there is a polynomial slow-down, which is induced by the limitation of the input space dimension.
\end{minipage}}
{Deep Combinations of Rectified Units} \\
\fbox{\begin{minipage}{\linewidth}
Process $n$ inputs through $L$ ReLU layers with widths $m_1,...,m_L\in O(m)$. Into how many ($R(m,L)$) cells can $\mathbf{R}^n$ be maximally partitioned? \\
\underline{\textbf{Theorem (Montufar, 2014):}} $R(m,L)\in\Omega\left((\frac{m}{n})^{n(L-1)}m^n\right)$ \\
For any fixed $n$, exponential growth can be ensured by making layers sufficiently wide ($m>n$) and increasing the level of functional nesting (i.e. depth $L$).
\end{minipage}}
{Hinging Hyperplanes} \\
\fbox{\begin{minipage}{\linewidth}
\underline{Def.:} Hinge function: If $f:\mathbf{R}^n\rightarrow\mathbf{R}$ can be written with parameters $w_1,w_2\in\mathbf{R}^n$ and $b_1,b_2\in \mathbf{R}$ as below it is called a hinge function:
$g(\mathbf{x})=\max(\mathbf{w}_1^\top \mathbf{x} + b_1, \mathbf{w}_2^\top \mathbf{x} + b_2)$\\
- face: $(\mathbf{w}_1-\mathbf{w}_2)^\top\mathbf{x}+(b_1-b_2)=0$\\
- representational power: $2\max(f,g)=f+g+|f-g|$\\
- k-Hinge function: $g(\mathbf{x})=\max(\mathbf{w}_1^\top \mathbf{x} + b_1,...,\mathbf{w}_k^\top \mathbf{x} + b_k)$ \\
\underline{\textbf{Theorem (Wang and Sun, 2004):}} Every continuous piecewise linear function from $\mathbf{R}^n\rightarrow\mathbf{R}$ can be written as a signed sum of $k$-Hinges with $k\leq n+1$. \\
- exact representation (not approximation as ReLU, AVU). \\
- to represent $k$-Hinge with ReLU: need depth log. in $k$.
\end{minipage}}
\begin{minipage}{\linewidth}
{Polyhedral Function (Convex functions)} \\
\fbox{\begin{minipage}{\linewidth}
= convex and continuous piecewise linear functions \\
- $f$ polyhedral $\leftrightarrow$ epi($f$) is a polyhedral set \\
- epigraph of $f$ (all points above the graph of $f$): \\ epi($f$)$:=\{(\mathbf{x},t)\in\mathbf{R}^{n+1}:f(\mathbf{x})\leq t\}$\\
- polyhedral set $S$: finite intersection of closed half-spaces\\
$S=\{\mathbf{x}\in\mathbf{R}^n:\mathbf{w}_j^\top\mathbf{x}+b_j\geq 0, j=1,...r\}$
\end{minipage}}
\end{minipage}
{Max-Representation of Polyhedral Functions} \\
\fbox{\begin{minipage}{\linewidth}
For every polyhedral $f$, there exists $\mathcal{A} \subset \mathbf{R}^{n+1}, |\mathcal{A}|=m$ s.t. \\
$f(x) = \max_{(w,b)\in \mathcal{A}}\{\mathbf{w}^\top \mathbf{x} +b \}$ \\
- each polyhedral $f$ can be repres. as max. of supp. hyperplanes \\
- linear functions in $\mathcal{A}$ describe supporting hyperplanes of epi($f$).
\end{minipage}}
{ Continuous Piecewise Linear Functions} \\
\fbox{\begin{minipage}{\linewidth}
\underline{\textbf{Theorem (Wang, 2004):}} Every continuous piecewise linear function $f$ can be written as the difference of two polyhedral functions; with finite $\mathcal{A}^+, \mathcal{A}^-$ \\
$f(x)=\max_{(w,b)\in \mathcal{A}^+}\{\mathbf{w}^\top \mathbf{x} +b \} -
\max_{(w,b)\in \mathcal{A}^-}\{\mathbf{w}^\top \mathbf{x} +b \}$
\end{minipage}}
{2 $\times$ Maxout = Allout} \\
\fbox{\begin{minipage}{\linewidth}
\underline{\textbf{Theorem (Goodfellow, 2013):}} Maxout networks with two maxout units are universal function approximators.
\end{minipage}}
%
\fcolorbox{black}{green}{\begin{minipage}{\linewidth}
1. Wang's theorem: linear network with two maxout units and a linear output unit (subtraction) can represent any continuous PWL function (exactly!).\\
2. Continuous PWL functions are dense in $C(\mathbf{R}^n)$.
\end{minipage}}
%
\hl{\textbf{2.2: Sigmoid Networks}}\\
{Sigmoid functions} \\
\fbox{\begin{minipage}{\linewidth}
$\sigma(t) = \frac{1}{1+e^{-t}}=\frac{e^t}{1+e^t}\in(0;1), \sigma^{-1}(\mu) =\ln \left(\frac{\mu}{1-\mu}\right)$ \\
$\tanh(t)=2\sigma(2t)-1\in(-1;1)$
\end{minipage}}
{Approximation Theorem} \\
\fbox{\begin{minipage}{\linewidth}
\underline{\textbf{Theorem (Lencho, Lin, Pinkus, Schocken, 1993):}} Let $\sigma\in C^\infty (\mathbf{R})$, not a polynomial, then $\mathcal{H}^1_\sigma$ is dense in $C(\mathbf{R})$; i.e. results in dense function approximation.\\
\underline{\textbf{Corollary:}} MLPs with one hidden layer and any non-polynomial, smooth activation function are universal function approximators. \\
\underline{\textbf{Lemma:}} MLPs with one hidden layer and a polynomial activation function are \textbf{not} universal function approximators.
\end{minipage}}
\fcolorbox{black}{green}{\begin{minipage}{\linewidth}
1. For all $h\neq 0: \frac{\sigma((\lambda+h)t+\theta)-\sigma(\lambda t + \theta)}{h}\in \mathcal{H}_\sigma$\\
2. It follows that (generalizing to all k-th derivatives): \\
$\frac{d^k}{d\lambda^k}\sigma(\lambda t +\theta)|_{\lambda = 0} = t^k\sigma^{(k)}(\theta)\in cl(\mathcal{H}_\sigma)$\\
3. If we can show that there always is a $\theta_0$ such that $\sigma^{(k)}(\theta_0)\neq 0$ then we are be guaranteed that $t^k \in cl(\mathcal{H}_\sigma)$ and hence all polynomials. \\
4. By the Weierstrass theorem this implies the result\\
\underline{\textbf{Theorem (Donoghue, 1969):}} If $\sigma$ is $C^\infty$ on $(a;b)$ and it is not a polynomial thereon, then there exists a point $\theta_0\in(a;b)$ such that $\sigma^{(k)}(\theta_0)\neq 0$ for $k=0,1,2,...$.
\end{minipage}}
{Sigmoidal MLP: Approximation Guarantees} \\
\fbox{\begin{minipage}{\linewidth}
\underline{\textbf{Theorem (Barron, 1993):}} For every $F:\mathbf{R}^n\rightarrow \mathbf{R}$ with absolutely continuous Fourier transform and for every $m$ there is a function of the form $\tilde{f}_m$ such that \\
$\int_{B_r}(f(\mathbf{x} - \tilde{f}_m(\mathbf{x}))^2\mu(d\mathbf{x}) \leq O(1/ m)$\\ where $B_r=\{\mathbf{x}\in \mathbf{R}^n: \|\mathbf{x} \|\leq r \}$ and $\mu$ is any probability measure on $B_r$.\\
The residual bound does not depend on the input dimension $n$
\end{minipage}}
%
\hl{\textbf{2.3/3.1: Feedforward Networks}}\\
%
\fbox{\begin{minipage}{\linewidth}
\underline{\textbf{Def. (Feedforward networks):}} A set of computational units arranged in a DAG (directed acyclic graph).
\underline{\textbf{Def. (Hidden layer):}} A layer that is neither the input, nor the output layer.
\end{minipage}}
%
\hl{\textbf{2.4/3.2: Output Units and Objectives}}\\
%
{Loss function} \\
\fbox{\begin{minipage}{\linewidth}
\underline{\textbf{Def. (Loss function):}} A non-negative function \\
$l: \mathcal{Y}\times\mathcal{Y}\rightarrow \mathbf{R}_{\geq 0},$ $(y^*,y)\rightarrow l(\mathbf{y}^*,\mathbf{y})$, output space: $\mathcal{Y}$ \\
squared error: $\mathcal{Y}=\mathbf{R}^m, l(\mathbf{y}^*, \mathbf{y})=\|\mathbf{y}^*-\mathbf{y} \|^2_2 = \sum_{i=1}^m(y^*_i-y_i)^2$ \\
claissification error: $\mathcal{Y}=[1:m], l(\mathbf{y}^*,\mathbf{y})=1-\delta_{\mathbf{y}^*\mathbf{y}}$
\end{minipage}}
\fbox{\begin{minipage}{\linewidth}
\underline{\textbf{Def. (Expected risk (expected loss)):}} Assume inputs and outputs are governed by a distribution $p(\mathbf{x},\mathbf{y})$ over $\mathcal{X}\times\mathcal{Y},\mathcal{X}\subset \mathbf{R}^n$. The expected risk of $F$ is given by $J^*(F)=\mathbf{E}_{x,y}[l(\mathbf{y},F(\mathbf{x})]$
\end{minipage}}
\fbox{\begin{minipage}{\linewidth}
\underline{\textbf{Def. (Training/Empirical risk):}} Assume we have a random sample of $N$ input-output pairs $\mathcal{S}_N:=\{(\mathbf{x}_i, \mathbf{y}_i)$ iid distr. $\{ p:i=1,...,N\}$.\\
The training risk of $F$ on a training sample is \\
$J(F;\mathcal{S}_N)=\frac{1}{N}\sum^N_{i=1}l(y_i,F(x_i))$\\
- training risk is the expected risk under the empirial distribution induced by the sample $\mathcal{S}_N$.
\end{minipage}}
\fbox{\begin{minipage}{\linewidth}
\underline{\textbf{Def. (Empirical risk minimizer):}}\\ $\hat{F}(\mathcal{S}_N)=\arg\min_{F\in\mathcal{F}}J(F;\mathcal{S}_N)$ with parameter $\hat{\theta}(\mathcal{S}_N)$.
\end{minipage}}
\fbox{\begin{minipage}{\linewidth}
\underline{\textbf{Def. (Generalized linear models):}} predict the mean of the output distribution: $\mathbf{E}[y|x]=\sigma(\mathbf{w}^\top\mathbf{x})$, $\sigma$ is invertible, $\sigma^{-1}$ is the link function.
\end{minipage}}
%
Log Likelihood\\
\fbox{\begin{minipage}{\linewidth}
$J(\theta;(\mathbf{x},\mathbf{y}))=-\log p(\mathbf{y}|\mathbf{x};\theta)$
\end{minipage}}
%
Logistic Log Likelihood\\
\fbox{\begin{minipage}{\linewidth}
$J(F;(x,y))=-\log p(y|z)=-\log \sigma((2y-1)z)=\zeta((1-2y)z)$ \\
with $z:=\bar{F}(\mathbf{x})\in\mathbf{R}$, $\zeta=\log(1+\exp(\cdot))$ (soft-plus)
\end{minipage}}
%
Likelihood for logistic regression\\
\fbox{\begin{minipage}{\linewidth}
$L = \prod_{i=1}^n p(x_i)^{y_i}(1-p(x_i))^{1-y_i}$
\end{minipage}}
%
Multinomial Log Likelihood\\
\fbox{\begin{minipage}{\linewidth}
$J(F;(\mathbf{x},y))=-\log p(y|\mathbf{x};F)=-\log\left[\frac{e^{z_y}}{\sum_{i=1}^m e^{z_i}}\right]\\=-z_y+\log\sum_{i=1}^m\exp[z_i]$
with $\mathbf{z}:=\bar{F}_i(\mathbf{x})=\mathbf{w}_i^\top \mathbf{x}\in\mathbf{R}^m$
\end{minipage}}
%
\hl{ \textbf{3.3/4.1: Backpropagation}}: Exploit compositional structure\\
%
\fbox{\begin{minipage}{\linewidth}
1. perform a forward pass (for given training example ($\mathbf{x},\mathbf{y}$)) to compute activations for all units (use $\mathbf{x}$, apply $F_1$, get first hidden layer...) \\
2. compute gradient of $J$ wrt. output layer activations\\
3. iteratively propagate activation gradient information from outputs to inputs ($\rightarrow$ backpropagation)\\
4. compute local gradients of activations wrt. weights
\end{minipage}}
\fbox{\begin{minipage}{\linewidth}
Chain rule: $(f \circ g)' = (f' \circ g) \cdot g'$ \\
$\frac{d(f\circ g)}{dx}|_{x=x_0} =\frac{df}{dz}|_{z=g(x_0)} \cdot \frac{dg}{dx}|_{x=x_0} $
\end{minipage}}
Jacobi matrix \\
\fbox{\begin{minipage}{\linewidth}
$\mathbf{J}_F:=\begin{bmatrix} \nabla^\top F_1 \\ \nabla^\top F_2 \\ ...\\
\nabla^\top F_m \end{bmatrix}
= \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & ... & \frac{\partial F_1}{\partial x_n} \\
\frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & ... & \frac{\partial F_2}{\partial x_n} \\
... & ... & ... & ... \\
\frac{\partial F_m}{\partial x_1} & \frac{\partial F_m}{\partial x_2} & ... & \frac{\partial F_m}{\partial x_n} \end{bmatrix} \in \mathbf{R}^{m\times n}$ \\
for vector-valued function (map) $F:\mathbf{R}^n\rightarrow \mathbf{R}^m$
\end{minipage}}
Jacobi Matrix Chain Rule \\
\fbox{\begin{minipage}{\linewidth}
Vector-valued funtions $G:\mathbf{R}^n\rightarrow\mathbf{R}^q, F:\mathbf{R}^q\rightarrow\mathbf{R}^m$ \\
componentwise rule: \\
$\frac{\partial (F\circ G)}{\partial x_i}|_{x=x_0} = \sum_{k=1}^q \frac{\partial F_j}{\partial z_k}|_{\mathbf{z}=G(\mathbf{x}_0)}\cdot \frac{\partial G_k}{\partial x_i}|_{x=x_0}$ \\
Jacobi matrix chain rule (do not commute!) \\
$\mathbf{J}_{F\circ G}|_{x=x_0} = \mathbf{J}_F|_{z=G(x_0)} \cdot \mathbf{J}_G|_{x=x_0}$
\end{minipage}}
Function Composition \\
\fbox{\begin{minipage}{\linewidth}
$G:\mathbf{R}^n\rightarrow \mathbf{R}^m, f:\mathbf{R}^m\rightarrow\mathbf{R}, f\circ G:\mathbf{R}^n\rightarrow \mathbf{R}$ \\
$\mathbf{R}^n \ni \mathbf{x} \overset{G}{\rightarrow} \mathbf{y} \overset{f}{\rightarrow} z \in \mathbf{R}$ \\
\underline{\textbf{Lemma(Chain rule for "activations"):}} \\
\fbox{$\nabla_\mathbf{x} z = \nabla_\mathbf{y}^\top z\cdot \mathbf{J}_G,$} $\frac{\partial z}{\partial x_i} = \sum_j\frac{\partial y_j}{\partial x_i}\frac{\partial z}{\partial y_j}$ \\
$z$: output, $x$:input, for $f$ don't need Jacobian
\end{minipage}}
Activity Backpropagation \\
\fbox{\begin{minipage}{\linewidth}
$F=F^L\circ \cdots \circ F^1 :\mathbf{R}^n \rightarrow \mathbf{R}^m $ \\
$\mathbf{x}=\mathbf{x}^0 \overset{F^1}{\rightarrow} \mathbf{x}^1 \overset{F^2}{\rightarrow} \mathbf{x}^2 \rightarrow \cdots \overset{F^L}{\rightarrow}\mathbf{x}^L = \mathbf{y} \overset{\mathcal{R}}{\rightarrow} \mathcal{R}(\theta;\mathbf{y})$\\
$\nabla_\mathbf{x} J = \mathbf{J}^\top_{F^1} \cdots \mathbf{J}^\top_{F^L} \nabla_{\mathbf{y}}J$\\
Can compute all activity gradients $\nabla_{\mathbf{x}^l}$ in backward order via successive matrix multiplication with (transposed) Jacobians. \\
$\mathbf{e}^0:=\nabla_\mathbf{y}^\top \mathcal{R}$, \\
$\mathbf{e}^l:=\nabla^\top_{\mathbf{x}^l}\mathcal{R}=
\mathbf{e}^0\cdot \mathbf{J}_{F^l}\cdots \mathbf{J}_{F^{l+1}}=\mathbf{e}^{l+1}\mathbf{J}_{F^{l+1}}$
\end{minipage}}
%
\fcolorbox{black}{green}{\begin{minipage}{\linewidth}
Proof (by induction over depth $L$) \\
Base case ($L=0$): $\mathbf{x}=\mathbf{y}\Rightarrow \nabla_\mathbf{x} J = \nabla_\mathbf{y}J$\\
Induction case: $F=(F^L\circ \cdots \circ F^2)\circ F^1$\\
$\nabla_\mathbf{x} J \overset{\text{lemma}}{=}\mathbf{J}^\top_{F^1}\nabla_{\mathbf{x}^1}J\overset{IH}{=}\mathbf{J}^\top_{F^1}(\mathbf{J}^\top_{F^2}...\mathbf{J}^\top_{F^L} \nabla_\mathbf{y}J)$
\end{minipage}}
%
Jacobian for ridge function \\
\fbox{\begin{minipage}{\linewidth}
$\mathbf{x}^l=F^l(\mathbf{x}^{l-1})=\sigma(\mathbf{W}^l\mathbf{x}^{l-1}+\mathbf{b}^l)$\\
$\frac{\partial x^l_i}{\partial x^{l-1}_j}=\sigma'(\langle\mathbf{w}^l_i,\mathbf{x}^{l-1}\rangle+b^l_i)W^l_{ij}:=\bar{W}^l_{ij}$\\
thus: $\mathbf{J}_{F^l}=\mathbf{\tilde{W}}^l$
\end{minipage}}
\fbox{\begin{minipage}{\linewidth}
Multinomial Logistic Regression \\
$\mathbf{z}:=\bar{F}_i(\mathbf{x})\in\mathbf{R}^m$ \\
$J(F;(\mathbf{x},y))=-\log p(y|\mathbf{x};F)=-\log\left[\frac{e^{z_y}}{\sum_{i=1}^m e^{z_i}}\right]\\ = - z_y+\log\sum_{i=1}^m\exp[z_i]=\log\left[1+\sum_{i\neq y}\exp[z_i-z_y]\right]$\\
Multivariate logistic loss \\
$-\frac{\partial J(x,y^*)}{\partial z_y}=\frac{\partial}{\partial z_y}\left[z_{y^*}-\log\sum_i\exp[z_i] \right]\\= \delta_{yy^*} -\frac{\exp[z_y]}{\sum_i\exp[z_i]}=\delta_{yy^*}-p(y|x)$
\end{minipage}}
\fbox{\begin{minipage}{\linewidth}
Quadratic loss (neg. gradient: in what direction want to move)\\
$-\nabla_\mathbf{y}J(\mathbf{x},\mathbf{y}^*)=-\nabla_\mathbf{y}\frac{1}{2}\|\mathbf{y}^*-\mathbf{y} \|^2 = \mathbf{y}^*-\mathbf{y}$
\end{minipage}}
From Activations to Weights \\
\fbox{\begin{minipage}{\linewidth}
$\frac{\partial \mathcal{R}}{\partial W^l_{ij}}=\frac{\partial \mathcal{R}}{\partial x^l_i}\frac{\partial x^l_i}{\partial W^l_{ij}}=\frac{\partial \mathcal{R}}{\partial x^l_i}\cdot \sigma'(\langle\mathbf{w}^l_i,\mathbf{x}^{l-1}\rangle+b^l_i)\cdot x^{l-1}_j$ \\
$\frac{\partial \mathcal{R}}{\partial b^l_{i}}=\frac{\partial \mathcal{R}}{\partial x^l_i}\frac{\partial x^l_i}{\partial b^l_{i}}=\frac{\partial \mathcal{R}}{\partial x^l_i}\cdot \sigma'(\langle\mathbf{w}^l_i,\mathbf{x}^{l-1}\rangle+b^l_i)\cdot 1$
\end{minipage}}
\hl{\textbf{4.2: Optimization for Deep Network`s}}\\
{Gradient Descent} \\
\fbox{\begin{minipage}{\linewidth}
$\theta(t+1) \leftarrow \theta(t)-\eta \nabla_\theta J(\mathcal{S})$ \\
$\mathcal{S}$ = all training data $\Rightarrow$ steepest descent \\
$\mathcal{S}$ = mini batch of data $\Rightarrow$ SGD
\end{minipage}}
\fbox{\begin{minipage}{\linewidth}
$\theta(t+1) = \theta(t)-\eta\nabla_\theta \mathcal{R}$, cont.: $\dot{\theta}=-\nabla_\theta \mathcal{R}$ (Euler's method)
\end{minipage}}
Grad Descent Analysis (Convex objective $\mathcal{R}$)\\
\fbox{\begin{minipage}{\linewidth}
$\mathcal{R}$ has $L$-Lipschitz-continuous gradients: \\
$\mathcal{R}(\theta(t))-\mathcal{R}^* \leq \frac{2L}{t+1}\| \theta(0)-\theta^* \|^2 \in \mathbf{O}(t^{-1})$
\end{minipage}}
\fbox{\begin{minipage}{\linewidth}
$\mathcal{R}$ is $\mu$-strongly convex in $\theta$:\\
$\mathcal{R}(\theta(t))-\mathcal{R}^* \leq \left(1-\frac{\mu}{L} \right)^t \mathcal{R}(\theta(t))-\mathcal{R}^*)$\\
- exponential convergence ("linear rate")\\
- rate depends adversely on condition number $L/\mu$.
\end{minipage}}
\fbox{\begin{minipage}{\linewidth}
Lower bound (general case): $\mathbf{O}(t^{-2})$, achieved by Neterov acceleration.
\end{minipage}}
Curvature of objective function\\
\fbox{\begin{minipage}{\linewidth}
$\mathcal{R}(\theta-\eta\nabla\mathcal{R}) \overset{Taylor}{\approx} \mathcal{R}(\theta)-\eta \|\nabla\mathcal{R}\|^2+\frac{\eta^2}{2}\nabla\mathcal{R}^\top\mathbf{H}\nabla\mathcal{R}$ \\
with $\nabla\mathcal{R}^\top\mathbf{H}\nabla\mathcal{R}=\|\nabla\mathcal{R}\|^2_\mathbf{H}$, $\mathbf{H}=\nabla^2\mathcal{R}$ \\
ill-conditioning: $\frac{\eta}{2}\|\nabla\mathcal{R}\|^2_\mathbf{H} \gtrsim
\|\nabla\mathcal{R}\|^2$
\end{minipage}}
{Least-Squares: Single Layer Linear Network}\\
\fbox{\begin{minipage}{\linewidth}
Objective: \\
$\mathcal{R}(\mathbf{A})=\mathbf{E}\|\mathbf{y}-\mathbf{A}\mathbf{x}\|^2=\Tr\mathbf{E}[(\mathbf{y}-\mathbf{A}\mathbf{x})(\mathbf{y}-\mathbf{A}\mathbf{x})^\top]$ \\
$=\Tr\mathbf{E}[\mathbf{y}\mathbf{y}^\top]+\Tr(\mathbf{A}\mathbf{E}[\mathbf{x}\mathbf{x}^\top]\mathbf{A}^\top)-2\Tr(\mathbf{A}\mathbf{E}[\mathbf{x}\mathbf{y}^\top])$\\
Gradient of objective: \\
$\nabla_\mathbf{A}\mathcal{R}=\nabla\mathbf{A}
\Tr(\mathbf{A}\mathbf{A}^\top)-2\nabla\mathbf{A}\Tr(\mathbf{A}\mathbf{\Gamma}^\top)=
2(\mathbf{A}-\mathbf{\Gamma})$
\end{minipage}}
{Least-Squares: Two Layer Linear Network ($\mathbf{A}=\mathbf{Q}\mathbf{W}$)}\\
\fbox{\begin{minipage}{\linewidth}
Objective: \\\
$\mathcal{R}(\mathbf{Q},\mathbf{W})=\text{const.}+\Tr(\mathbf{Q}\mathbf{W}\cdot (\mathbf{Q}\mathbf{W})^\top)-2\Tr(\mathbf{Q}\mathbf{W}\cdot\mathbf{\Gamma}^\top)$\\
$\frac{1}{2}\nabla_\mathbf{Q}\mathcal{R}=(\mathbf{QW})\mathbf{Q}^\top-\mathbf{\Gamma W}^\top = \mathbf{(A-\Gamma)W^\top}\in\mathbf{R}^{m\times k}$\\
$\frac{1}{2}\nabla_\mathbf{W}\mathcal{R}=\mathbf{Q\top(A-\Gamma)}\in \mathbf{R}^{k\times n}$\\
SVD of $\mathbf{\Gamma=U\Sigma V^\top}$, lin. transform: $\mathbf{\tilde{Q}=U^\top Q}$, $\mathbf{\tilde{W}=WV}$
\\
$\frac{1}{2}\nabla_\mathbf{\tilde{Q}}\mathcal{R}=\mathbf{UU^\top(\tilde{Q}\tilde{W}-\Sigma)VV^\top\tilde{W}^\top = (\tilde{Q}\tilde{W}-\Sigma)\tilde{W}^\top}$\\
$\frac{1}{2}\nabla_\mathbf{\tilde{W}}\mathcal{R}=\mathbf{\tilde{Q}^\top(\tilde{Q}\tilde{W}-\Sigma)}$\\
$\frac{1}{2}\nabla_{\mathbf{q}_r}\mathcal{R}=(\mathbf{q_r^\top w_r-\sigma_r)w_r+\sum_{s\neq r}(q^\top_r w_s)w_s}$\\
$\frac{1}{2}\nabla_{\mathbf{w}_r}\mathcal{R}=(\mathbf{q_r^\top w_r-\sigma_r)q_r+\sum_{s\neq r}(q^\top_s w_r)q_s}$\\
Equivalent energy function (guessed)
\\ $\mathcal{\tilde{R}}(\mathbf{\tilde{Q}}, \mathbf{\tilde{W}})=\mathbf{\sum_r(q_r^\top w_r -\sigma_r)^2 + \sum_{s\neq r}(q^\top_s w_r)^2}$\\
cooperation: same input-output mode weight vector align \\
competition: different mode weight vectors are decoupled
\end{minipage}}
%
\hl{ \textbf{4.3: Stochastic Gradient Descent}}\\
\fbox{\begin{minipage}{\linewidth}
Choose update direction $\mathbf{v}$ at random such that $\mathbf{E[v]}=-\nabla \mathcal{R}$\\
$\mathcal{S}_K \subseteq \mathcal{S}_N, K\leq N$\\
$\mathbf{E}\mathcal{R}(\mathcal{S}_K)=\mathcal{R}(\mathcal{S}_N) \Rightarrow \mathbf{E} \nabla\mathcal{R}(\mathcal{S}_K)=\nabla\mathcal{R}(\mathcal{S}_N)$\\
\textbf{Update step}: $\theta(t+1)=\theta(t)-\eta\nabla\mathcal{R}(t), \mathcal{R}:=\mathcal{R}(\mathcal{S}_K(t))$ \\
Convergence to optimum: convex or strongly convex objective, Lipschitz gradients, decaying learning rate $\sum_{t=1}^\infty \eta^2(t)<\infty,\sum_{t=1}^\infty \eta(t)=\infty$, e.g. $\eta(t)=Ct^{-\alpha},\frac{1}{2}<\alpha\leq 1$, iterate (Polyak) averaging \\
\textbf{Convergence rates}: \\
- strongly-convex case: $\mathcal{O}(1/t)$\\
- non-strongly convex: $\mathcal{O}(1/\sqrt{t})$
\end{minipage}}
%
%
{Heavy Ball Method} (accelerate learning)\\
\fbox{\begin{minipage}{\linewidth}
Update: $\theta(t+1)=\theta(t)-\eta\nabla\mathcal{R}+\alpha(\theta(t)-\theta(t-1)), \alpha\in[0;1)$\\
Gradients are constant $\Rightarrow$ update steps are boosted by $1/(1-\alpha)$: \\
$\eta\|\nabla J\|(1+\alpha + \alpha^2+\alpha^3+...) \rightarrow \frac{\eta \|\nabla J\|}{1-\alpha}$,
$\alpha=0.9\Rightarrow 10\times$ \\
- accelerate for high curvature, small but consistent gradient, or noisy gradients.\\
- aims to solve poor conditioning of Hessian matrix and variance in stochastic gradient.
\end{minipage}}
%
%
{AdaGrad}\\
\fbox{\begin{minipage}{\linewidth}
Consider the entire history of gradients: gradient matrix: \\
$\theta\in\mathbf{R}^d, \mathbf{G}\in\mathbf{R}^{d\times t_{max}}, g_{it}=\frac{\partial \mathcal{R}(t)}{\partial \theta_i}|_{\theta=\theta(t)}$ \\
Learning rate decays faster for weights that have seen significant updates.
Compute (partial) row sums of $\mathbf{G}$: $\gamma^2_i(t):=\sum_{s=1}^t g_{is}^2$ \\
Adapt learning rate per parameter: \\
$\theta_i(t+1)=\theta_i(t)-\frac{\eta}{\delta + \gamma_i(t)}\nabla\mathcal{R}(t), \delta>0$ (small) \\
Non-convex variant: RMSprop (moving average, expon. weighted):
$\gamma^2_i(t):=\sum_{s=1}^t \rho^{t-s}g^2_{is}, \rho<1$
\end{minipage}}
%
%
{BFGS/LBFGS} (advantages of Newton, without comp. burden)\\
\fbox{\begin{minipage}{\linewidth}
Newton method: $\theta(t+1)=\theta(t)-(\nabla^2\mathcal{R})^{-1}\nabla\mathcal{R}|_{\theta=\theta(t)}$ \\
BFGS: $(\nabla^2\mathcal{R})^{-1}\approx \mathbf{M}(t)$: $\theta(t+1)=\theta(t)-\eta(t)M(t)\nabla\mathcal{R}|_{\theta=\theta(t)}$ \\
where $\mathbf{M}(t+1)=\mathbf{M}(t)$ + rank one update with $\nabla\mathcal{R}$, $\eta(t)$ via line search. LBFGS: Reduce memory footprint with $\mathbf{\tilde{M}}\approx \mathbf{M}(t)$ with $k\approx 30$ rank one matrices (pairs of vectors), mini-batch
\end{minipage}}
%
{\hl{\textbf{4.4/6.1: Optimization Heuristics}}}\\
%
{Polyak averaging (Average over iterates, reduce fluctuation)}\\
\fbox{\begin{minipage}{\linewidth}
Linear (convex case): $\bar{\theta}(t) = \frac{1}{t}\sum_{s=1}^t\theta(s)$ \\
Running (non-convex): $\bar{\theta}(t) = \alpha \theta(t-1)+(1-\alpha)\theta(t), \alpha \in [0;1)$
\end{minipage}}
%
%
{Batch normalization}\\
\fbox{\begin{minipage}{\linewidth}
Hard to find suitable learning rate for all layers (strong dependencies between weights in layers exist) $\Rightarrow$ normalize the layer activations + backpropagate through normalizations\\
Fix layer $l$, fix set of example $I\subseteq [1:N]$ \\
$\mu^l_j := \frac{1}{|I|}\sum_{i\in I}(F^l_j \circ ... \circ F^1)(\mathbf{x}[i])\in\mathbf{R}^{m_l}$ \\
$\sigma^l_j:=\sqrt{\delta+\frac{1}{|I|}\sum_i (F^l_j \circ ... \circ F^1)(\mathbf{x}[i])-\mu_j)^2}, \delta >0$ \\
Normalized activities: $\mathbf{\tilde{x}}^l_j:=\frac{\mathbf{x}^l_j-\mu_j}{\sigma_j}$ \\
Regain representational power: $\mathbf{\tilde{\tilde{x}}}^l_j = \alpha_j\mathbf{\tilde{x}}^l_j + \beta_j$
\end{minipage}}
Batch normalization (simplified) \\
\fbox{\begin{minipage}{\linewidth}
1) \textbf{Input}: mini-batch of real values $X=(x_1,..,x_n)\in\mathbf{R}^n$\\
2) \textbf{Learnable parameters}: $\gamma,\beta\in\mathbf{R}$ \\
3) \textbf{Output}: $Y=(y_1,..,y_n)\in\mathbf{R}^n$, where we have \\
(a) Mini-batch mean: $\mu:=\frac{1}{n}\sum_i x_i$\\
(b) Mini-batch variance: $\sigma^2:=\frac{1}{n}\sum_i(x_i-\mu)^2$\\
(c) Normalized mini-batch (matrix form): $\hat{X}:=\frac{X-\mu}{\sqrt{\sigma^2+\epsilon}}$ \\
(d) Output: $Y=BN_{\gamma,\beta}(X):=\gamma \hat{X}+\beta$
\end{minipage}}
%
\hl{\textbf{4.4/6.2: Norm-based Regularization}}\\
%
\fbox{\begin{minipage}{\linewidth}
Regularization = Any aspect of a learning algorithm that is intended to lower the generalization error but not the training error. E.g.: Informed regularization: encode specific prior knowledge. simplicity bias: preference for simpler models (Occam's razor). Data augmentation and cross-task learning. Model averaging, e.g. ensemble methods, drop-out.
\end{minipage}}
\fbox{\begin{minipage}{\linewidth}
Standard regularization: $\mathcal{R}_\Omega(\theta;\mathcal{S})=\mathcal{R}(\theta;\mathcal{S})+\Omega(\theta)$ \\
Deep networks: $\Omega(\theta)=\frac{1}{2}\sum_{l=1}^L\mu^l\|\mathbf{W}^l\|^2_F,\mu^l\geq0$
\end{minipage}}
Weight decay \\
\fbox{\begin{minipage}{\linewidth}
Regularization based on $L_2$-norm is also called weight decay:
$ \frac{\partial\Omega}{\partial W^l_{ij}}=\mu^l w^l_{ij}$\\
weights in $l$-th layer get pulled towards zero with "gain" $\mu^l$ \\
naturally favors weights of small magnitude \\
GD update: $\theta(t+1)=(1-\mu)\cdot \theta(t)-\eta\cdot\nabla_\theta\mathcal{R}$
\end{minipage}}
Weight decay (Analysis) \\
\fbox{\begin{minipage}{\linewidth}
Taylor: $\mathcal{R}(\theta)\approx \mathcal{R}(\theta^*)+\frac{1}{2}(\theta-\theta^*)^\top\mathbf{H}(\theta-\theta^*)$, where $\mathbf{H}_\mathcal{R}$ is the Hessian of $\mathcal{R}$:
$\mathbf{H}_\mathcal{R}=\left(\frac{\partial^2\mathcal{R}}{\partial \theta_i \partial \theta_j}\right)$, and $\mathbf{H}:=\mathbf{H}_\mathcal{R}|_{\theta=\theta^*}$\\
$\nabla_\theta \mathcal{R}_\Omega \overset{!}{=}0 $ with $\mathbf{H=Q\Lambda Q^\top}, \mathbf{\Lambda}=diag(\lambda_1,...,\lambda_d)$\\ $\Rightarrow \theta = \mathbf{Q}(\Lambda +\mu I)^{-1}\Lambda Q^\top \theta^*$ \\
- Along directions in parameter space with large eigenvalues of $\mathbf{H}$ (i.e. $\lambda_i \gg \mu$): vanishing effect \\
- Along directions in parameter space with small eigenvalues of $\mathbf{H}$ (i.e. $\lambda_i \ll \mu$): shrunk to nearly zero magnitude\\
Linear regression: $\mathcal{R}_\Omega(\theta)=\frac{1}{2}(\mathbf{X}\theta-y)^\top(\mathbf{X}\theta-y)+\frac{\mu}{2}\|\theta \|^2 \Rightarrow \theta =\mathbf{(X^\top X+\mu I)^{-1}X^\top y}$
\end{minipage}}
Regularization via Constrained Optimization \\
\fbox{\begin{minipage}{\linewidth}
$\min_{\theta:\|\theta\|\leq r}\mathcal{R}(\theta)$ \\
Optimization approach: Projected gradient descent: \\
$\theta(t+1)=\Pi_r(\theta(t)-\eta\nabla\mathcal{R}), \Pi_r(\mathbf{v}):=\min\left\{1,\frac{r}{\|\mathbf{v} \|}\right\}\mathbf{v}$ \\
Only active when weights are (too) large
\end{minipage}}
Early Stopping\\
\fbox{\begin{minipage}{\linewidth}
Stop learning after finite (small) number of iterations. E.g. use validation data to estimate risk. Stop when flat or worsening. Keep best solution.
\end{minipage}}
Early Stopping (Analysis)\\
\fbox{\begin{minipage}{\linewidth}
Taylor: $\nabla_\theta \mathcal{R}|_{\theta_0}\approx \nabla_\theta \mathcal{R}|_{\theta^*}+\mathbf{H}_{\nabla\mathcal{R}}|_{\theta^*}(\theta_0-\theta^*)=\mathbf{H}(\theta_0-\theta^*)$ \\
$(\mathbf{I}-\eta\mathbf{\Lambda})^t\overset{!}{=}\mu(\mathbf{\Lambda+\mu I})^{-1}$
which for $\eta \lambda_i \ll 1, \lambda_i \ll \mu$ can be achieved approximately via performing $t=\frac{1}{\eta \mu}$ steps. Early stopping $=$ approximate $L_2$ regularizer.
\end{minipage}}
\hl{\textbf{6.3: Dataset Augmentation}}\\
\fbox{\begin{minipage}{\linewidth}
- Generate virtual examples by applying transformations $\tau$ to each training example $(\mathbf{x,y})$ to get $(\mathbf{\tau(x),y)})$: e.g. crop, resize, rotate, reflect, add transformations through PCA. - Inject noise: to inputs, to weights (regularizing effect), to targets (soft targets, robustness wrt. label errors)
\end{minipage}}
%
Semi-supervised training (more unlabeled data)\\
\fbox{\begin{minipage}{\linewidth}
- define generative model with corresponding log-likelihood\\
- Opt. additive combination of supervised and unsupervised risk, sharing parameters
\end{minipage}}
%
Multi-Task Learning\\
\fbox{\begin{minipage}{\linewidth}
Share representations across tasks and learn jointly (i.e. minimize combined objective);
typically: share low level representations, learn high level representations per task.
\end{minipage}}
\\
{\textbf{Ensemble Methods: Bagging}}\\
\fbox{\begin{minipage}{\linewidth}
Ensemble method that combines model trained on bootstrap samples (BS); BS $\mathcal{\tilde{S}}^k_N$: sample $N$ times from $\mathcal{S}_N$ with replacement for $k=1,..,K$; train model on $\mathcal{\tilde{S}}^k_N\rightarrow \theta^k$. \\
Prediction: average model output probabilities $p(\mathbf{y|x;\theta^k})$: \\
$p(\mathbf{y|x})=\frac{1}{K}\sum^K_{k=1}p(\mathbf{y|x};\theta^k)$
\end{minipage}}
\hl{\textbf{6.4: Dropout}}\\
\fbox{\begin{minipage}{\linewidth}
Randomly "drop" subsets of units in network; keep probability $\pi^l_i$ for unit $i$ in layer $l$. Typically: $\pi^0_i=0.8, \pi^{l\geq 1}_i=0.5$
\end{minipage}}
{\textbf{Dropout Ensembles}}\\
\fbox{\begin{minipage}{\linewidth}
Dropout realizes an ensemble $p(\mathbf{y|x})=\sum_\mathbf{Z}p(\mathbf{Z})p(\mathbf{y|x;Z})$, where $\mathbf{Z}$ denotes the binary "zeroing" mask.
\end{minipage}}
{\textbf{Weight Rescaling}}\\
\fbox{\begin{minipage}{\linewidth}
Approximation to geometrically averaged ensemble, to avoid $10$-$20\times$ sampling blowup:
Scale each weight $w^l_{ij}$ by probability of unit $j$ being active:
$\tilde{w}^l_{ij} \leftarrow \pi^{l-1}_j w^l_{ij}$ \\
Make sure, net input to unit $i$ is calibrated, i.e. \\
$\sum_j \tilde{w}^l_{ij}x_j \overset{\text{!}}{=}\mathbf{E_Z}\sum_j z^{l-1}_j w^l_{ij} x_j = \sum_j\pi^{l-1}_j w^l_{ij}x_j$
\end{minipage}}
\hl{\textbf{7.1: Convolutional Layers}}\\
\fbox{\begin{minipage}{\linewidth}
\textbf{Continuous Convolution}\\
$(f\ast h)(u):=\int_{-\infty}^\infty h(u-t)f(t)dt=\int_{-\infty}^\infty f(u-t)h(t)dt$ \\
\textbf{Discrete Convolution}\\
$(f\ast h)[u]:=\sum_{t=-\infty}^\infty f[t]h[u-t]$\\
$(F\ast G)[i,j]=\sum_{k=-\infty}^\infty\sum_{l=-\infty}^\infty
F[i-k,j-l]\cdot G[k,l]$\\
Theorem: Any linear, translation-invariant transformation $T$ can be written as a convolution with a suitable $h$.\\
\textbf{Discrete Cross-Correlation} (sliding inner product)\\
$(f\star h)[u]:=\sum_{t=-\infty}^\infty f[t]h[u+t]$ \\
- Border handling: same padding, valid padding \\
- "Kernels" (across channels) form a linear map: $h:\mathbf{R}^{r^2\times d}\rightarrow\mathbf{R}^k$, where $r \times r$ is the window size (of convolution) and $d$ is the depth (RGB).\\
- Sub-sampling (strides) to reduce temporal/spatial resolution \\
- Learn multiple convolution kernels (or filters) = multiple channels
\end{minipage}}
Toeplitz matrix \\
\fbox{\begin{minipage}{\linewidth}
A matrix $\mathbf{H}\in\mathbf{R}^{k\times n}$ is a Toeplitz matrix, if there exists $n+k-1$ numbers $c_l(l\in[-(n-1):(k-1)]\cup \mathbf{Z})$ s.t. $H_{i,j}=c_{i-j}$
$
A =
\begin{bmatrix}
a_{0} & a_{-1} & a_{-2} & \ldots & \ldots & a_{-(n-1)} \\
a_{1} & a_0 & a_{-1} & \ddots & & \vdots \\
a_{2} & a_{1} & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & a_{-1} & a_{-2}\\
\vdots & & \ddots & a_{1} & a_{0} & a_{-1} \\
a_{n-1} & \ldots & \ldots & a_{2} & a_{1} & a_{0}
\end{bmatrix}\\
$
That is: $A_{i,j} = A_{i+1,j+1} = a_{i-j}$
\end{minipage}}
\fbox{\begin{minipage}{\linewidth}
$y = h \ast x =
\begin{bmatrix}
h_1 & 0 & \ldots & 0 & 0 \\
h_2 & h_1 & \ldots & \vdots & \vdots \\
h_3 & h_2 & \ldots & 0 & 0 \\
\vdots & h_3 & \ldots & h_1 & 0 \\
h_{m-1} & \vdots & \ldots & h_2 & h_1 \\
h_m & h_{m-1} & \vdots & \vdots & h_2 \\
0 & h_m & \ldots & h_{m-2} & \vdots \\
0 & 0 & \ldots & h_{m-1} & h_{m-2} \\
\vdots & \vdots & \vdots & h_m & h_{m-1} \\
0 & 0 & 0 & \ldots & h_m
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
\vdots \\
x_n
\end{bmatrix}
$\\
$\mathbf{H}^h_n\in\mathbf{R}^{(n+m-1)\times n}$.
\end{minipage}}
Backpropagation\\
\fbox{\begin{minipage}{\linewidth}
Exploit structural sparseness in computing $\frac{\partial x^l_i}{\partial x^{l-1}_j}$ \\
Receptive field of $x^l_i: \mathcal{I}^l_i:=\{j:W^l_{ij}\neq 0 \}$, where $\mathbf{W}^l$ is the Toeplitz matrix of the convolution; also $\frac{\partial x^l_i}{\partial x^{l-1}_j}=0$ for $j\notin \mathcal{I}^l_i$ \\
Weight sharing in computing $\frac{\mathcal{R}}{\partial h^l_j}$ where $h^l_j$ is a kernel weight:\\
$\frac{\mathcal{R}}{\partial h^l_j}=\sum_i \frac{\mathcal{R}}{\partial x^l_i} \frac{\partial x^l_i}{\partial h^l_i}$, weight is re-used for every unit within target layer $\Rightarrow$ additive combination
\end{minipage}}
%
CNNs (dimension)\\
\fbox{\begin{minipage}{\linewidth}
CNN
input: $H_1 \times W_1 \times C_1$, output of conv. layer with $N$ filters, kernel size $K$, stride $S$ and zero padding $P$:\\
$H2=(H_1 - K +2P)/S+1$, $W_2=(W_1-K+2P)/S+1$, $C_2=N$ \hrule
$H2=(H_1 - K)/S+1$, $W_2=(W_1-K)/S+1$, $C_2=C_1$
\end{minipage}}
%
BProp: Single input channel, single output channel\\
\fbox{\begin{minipage}{\linewidth}
input $x\in\mathbf{R}^{d\times d}$, weights $w\in\mathbf{R}^{k\times k}$ \\
output (before nonlinearity) $y=x * w$ \\
$\frac{\partial \mathcal{L}}{\partial w_{uv}}=\sum_{i}\sum_j \frac{\partial \mathcal{L}}{\partial y_{ij}}\frac{\partial y_{ij}}{\partial w_{uv}}$\\
$=\sum_{i}\sum_j \partial \delta_{ij}\frac{\partial}{\partial w_{uv}}\sum_a\sum_b x_{i-a,j-b}w_{ab}$\\
$=\sum_{i}\sum_j \partial \delta_{ij} x_{i-u,j-v} $\\$= \sum_i\sum_j \text{rot}_{180}(x_{u-i,v-j})\delta_{ij}=(\text{rot}_{180}(x)*\delta)_{u,v}$ \\
$\frac{\partial \mathcal{L}}{\partial x_{uv}}=\sum_i \sum_j \frac{\partial \mathcal{L}}{\partial y_{ij}}\frac{\partial y_{ij}}{\partial x_{ij}}=\ldots=(\text{rot}_{180}(w)*\delta)_{u,v}$
\end{minipage}}
FFT (compute convolutions faster, $\mathbf{O}(n\log n)$)\\
\fbox{\begin{minipage}{\linewidth}
$(f * h)=\mathcal{F}^{-1}((\mathcal{F}f))\cdot(\mathcal{F}h))$;
pays off if many channels; small kernels ($m < \log n$): favor time/space domain
\end{minipage}}
Convolutional Layers: Stages\\
\fbox{\begin{minipage}{\linewidth}
Input to layer $\rightarrow$ Convolution stage: affine transform $\rightarrow$ Detector stage: nonlinearity (e.g. rectified linear) $\rightarrow$ pooling stage (locally combine activities) $\rightarrow$ next layer
\end{minipage}}
Max Pooling\\
\fbox{\begin{minipage}{\linewidth}
Maximum over a small "patch" of units: \\
$1D: x^{max}_i = \max\{x_{i+k}:0\leq k < r\}$\\
$2D: x^{max}_{ij} = \max\{x_{i+k,j+l}:0\leq k,l < r\}$ \\
$\mathcal{T}$-invariance through maximization $f_\mathcal{T}(\mathbf{x}):=\max_{\tau\in\mathcal{T}}f(\tau \mathbf{x})$ \\
$f_\mathcal{T}$ is invariant under $\tau\in\mathcal{T}$: $f_\mathcal{T}(\tau\mathbf{x})=\max_{\rho\in\mathcal{T}}f(\rho(\tau\mathbf{x}))=
\max_{\rho\in\mathcal{T}}f((\rho\circ\tau)\mathbf{x})=\max_{\sigma\in\mathcal{T}}f(\sigma \mathbf{x})$,
as $\forall \sigma, \sigma=\rho\circ\tau$ with $\rho=\sigma\circ\tau^{-1}$
\end{minipage}}
\hl{\textbf{8.1: Conv. Networks for Natural Language}}\\
Point-wise mutual information (pmi)\\
\fbox{\begin{minipage}{\linewidth}
$\text{pmi}(v,w)=\log\frac{p(v,w)}{p(v)p(w)}=\log\frac{p(v|w}{p(v)}=\mathbf{x}\top\mathbf{x}_w+\text{const}.$
\end{minipage}}
Skip-gram objective\\
\fbox{\begin{minipage}{\linewidth}
$\mathcal{L}(\theta;\mathbf{w})=\sum_{(i,j)\in\mathcal{C_R}}\log
\left[\frac{p_\theta(w_i|w_j)}{p(w_i)} \right]$ with\\
co-occurence index set $\mathcal{C}_R:=\{(i,j)\in[1:T]^2:1\leq |i-j|\leq R \}$
\end{minipage}}
Skip-gram model (soft-max)\\
\fbox{\begin{minipage}{\linewidth}
$\log p_\theta(v|w)=\mathbf{x}^\top_v\mathbf{z}_w-\log\sum_{u\in\mathcal{V}}
\exp[\mathbf{x}^\top_u\mathbf{z}_w]$
\end{minipage}}
Skip-gram model (negative sampling, logistic regression)\\
\fbox{\begin{minipage}{\linewidth}
$\mathcal{L}(\theta;\mathbf{w})=\sum_{(i,j)\in\mathcal{C_R}}\left[\log\sigma
(\mathbf{x}^\top_{w_i}\mathbf{z}_{w_j})+k\mathbf{E}_{v\sim p_n}[\log\sigma(-\mathbf{x}^\top_{w_i}\mathbf{z}_{w_j})] \right]$
\end{minipage}}
\hl{ \textbf{8.2: Recurrent Networks}}\\
\fbox{\begin{minipage}{\linewidth}
- Markov property \\
- Time-invariance, share weights \\
$\bar{F}(h,x;\theta):=Wh+Ux+b$ \\
$y=H(h;\theta), H(h;\theta):=\sigma(Vh+c)$
\end{minipage}}
%
\includegraphics[width=0.8\columnwidth]{images/rnn.png} \\
\fbox{\begin{minipage}{\linewidth}
Backpropagation \\
$\frac{\partial \mathcal{R}}{\partial w_{ij}}=\sum_{t=1}^T\frac{\partial\mathcal{R}}{\partial h^t_i}\frac{\partial h^t_i}{\partial w_{ij}} = \sum_{t=1}^T\frac{\partial \mathcal{R}}{\partial h^t_i}\cdot \dot{\sigma}^t_i \cdot h^{t-1}_j$ \\
$\frac{\partial \mathcal{R}}{\partial u_{ik}}=\sum_{t=1}^T\frac{\partial\mathcal{R}}{\partial h^t_i}\frac{\partial h^t_i}{\partial u_{ik}} = \sum_{t=1}^T\frac{\partial \mathcal{R}}{\partial h^t_i}\cdot \dot{\sigma}^t_i \cdot x^t_k$ \\
with $\dot{\sigma}^t_i :=\sigma'(\bar{F}_i(h^{t-1},x^t))$\\
MLP: $\nabla_\mathbf{x}\mathcal{R}=\mathbf{J}_{F^1} ....\mathbf{J}_{F^L}\nabla_\mathbf{y}\mathcal{R}$ \\
RNN $(F^t=F)$: $\nabla_{\mathbf{x}^t}\mathcal{R} = \left[\prod_{s=t+1}^T \mathbf{W}^\top\mathbf{S}(\mathbf{h}^s) \right]\cdot \mathbf{J}_H\nabla_\mathbf{y}\mathcal{R}$ \\
where $\mathbf{S}(\mathbf{h}^s)=diag(\dot{\sigma}^s_1,...,\dot{\sigma}^s_n)$
\end{minipage}}
Loss depends on all outputs\\
\fbox{\begin{minipage}{\linewidth}
loss $L=\sum_{t=1}^T L_t$, input $\mathbf{x}^t$, state $\mathbf{h}^t$: \\
$\mathbf{h}^t=F(\mathbf{h}^{t-1},\mathbf{x}^t,\theta)=\alpha(\mathbf{W}\mathbf{h}^{t-1}+\mathbf{U}\mathbf{x}^t
+\mathbf{b})$ \\
$\frac{\partial L}{\partial \theta}=\sum_{t=1}^T\frac{\partial}{\partial \theta} L_t $\\
Sum over all the paths in the (unfolded) network leading from the parameters to the loss:
$\frac{\partial L_t}{\partial \theta}=\sum_{k=1}^t \frac{\partial L_t}{\partial h_t}\frac{\partial h_t}{\partial h_k} \frac{\partial h_k}{\partial \theta}$\\
Expansion along a single path: \\
$\frac{\partial h_t}{\partial h_k}=\prod_{i=k}^t\frac{\partial h_i}{\partial h_{i-1}}=\prod_{i=k}^tW^\top \text{diag}(\alpha'(\cdot))$
\end{minipage}}
Loss depends only on last output \\
\fbox{\begin{minipage}{\linewidth}
$\bar{h}_t=F(x_t,x_{t-1};\theta)$ \\
$h_t=\sigma(t)$\\
$y_t=G(h_t;\kappa)$\\
$L_T:=L(y_T)+\frac{\lambda}{2}\|\theta\|_2^2$\\
$\frac{\partial L_T}{\partial \theta} = \frac{\partial L(y_T)}{\partial \theta}+\lambda$ \\
$=\frac{\partial L(y_T)}{\partial y_T}\frac{\partial G(h_T;\kappa)}{\partial h_T}\sum_{k=t}^T\frac{\partial h_T}{\partial h_t}\frac{\partial h_t}{\partial \theta}$\\
$=\frac{\partial L(y_T)}{\partial y_T}\frac{\partial G(h_T;\kappa)}{\partial h_T}\sum_{k=t}^T\prod\frac{\partial h_T}{\partial h_t}\frac{\partial h_t}{\partial\theta}$
\end{minipage}}
Bi-Directional Recurrent Networks\\
\fbox{\begin{minipage}{\linewidth}
$g^t=G(x^t,g^{t+1};\theta)$ \\
\includegraphics[width=0.5\columnwidth]{images/bi_rnn.png}
\end{minipage}}
%
Deep Recurrent Networks\\
\fbox{\begin{minipage}{\linewidth}
$h^{t,1}=F^1(h^{t-1,1},x^t;\theta)$\\
$h^{t,l}=F^l(h^{t-1,l},h^{t,l-1};\theta), l=2,...,L$ \\
$y^t=H(h^{t,L};\theta)$\\
\includegraphics[width=0.2\columnwidth]{images/deep_rnn.png}
\end{minipage}}
\hl{\textbf{9.1: Memory Units}}\\
LSTM \\
\fbox{\begin{minipage}{\linewidth}
input processing (1), input g. (2), forget g. (3), output g. (4)\\
$F^\kappa = \sigma \circ \bar{F}^\kappa $, $\bar{F}^\kappa = W^\kappa h^{t-1} + U^\kappa x^t+ b^\kappa, \kappa\in\{1,2,3,4\}$ \\
Next state: $h^t=F^3(...)\circ h^{t-1}+F^2(...)\circ F^1(...)$ \\
Output: $y^t=F^4(...)\circ \tanh(h^t)$
\end{minipage}}
\fbox{\begin{minipage}{\linewidth}
= building unit for RNN. A common LSTM unit is composed of a cell, an input gate, an output gate, and a forget gate. \\
$f_t = \sigma_g(W_{f} x_t + U_{f} h_{t-1} + b_f) \in R^h \text{ (forget gate)}\\
i_t = \sigma_g(W_{i} x_t + U_{i} h_{t-1} + b_i) \in R^h \text{ (input gate)}\\
o_t = \sigma_g(W_{o} x_t + U_{o} h_{t-1} + b_o) \in R^h \text{ (output gate)}\\
c_t = f_t \circ c_{t-1} + i_t \circ \sigma_c(W_{c} x_t + U_{c} h_{t-1} + b_c) \text{ (cell state)}\\
h_t = o_t \circ \sigma_h(c_t) \text{ (output vector)}$\\
$W \in R^{h \times d}$, $U \in R^{h \times h} $ and $ \in R^{h}$: weight matrices and bias vector parameters which need to be learned during training \\
$x_t \in R^{d}:$ input vector to the LSTM unit\\
\includegraphics[width=\columnwidth]{images/LSTM.png}
\end{minipage}}
\fbox{\begin{minipage}{\linewidth}
Peephole connections allow the gates to access the constant error carousel (CEC), whose activation is the cell state. $h_{t-1}$ is not used, $c_{t-1}$ is used instead in most places.\\
$f_t = \sigma_g(W_{f} x_t + U_{f} c_{t-1} + b_f) \\
i_t = \sigma_g(W_{i} x_t + U_{i} c_{t-1} + b_i) \\
o_t = \sigma_g(W_{o} x_t + U_{o} c_{t-1} + b_o) \\
c_t = f_t \circ c_{t-1} + i_t \circ \sigma_c(W_{c} x_t + b_c) \\
h_t = o_t \circ \sigma_h(c_t)$
\begin{center}\includegraphics[width=0.5\columnwidth]{images/LSTM_peephole.png}\end{center}
\end{minipage}}\\
Gated Memory Units \\
\fbox{\begin{minipage}{\linewidth}
Memory state = output (lack output gate) \\
$z_t = \sigma_g(W_{z} x_t + U_{z} h_{t-1} + b_z) \\
r_t = \sigma_g(W_{r} x_t + U_{r} h_{t-1} + b_r) \\
h_t = z_t \circ h_{t-1} + (1-z_t) \circ \sigma_h(W_{h} x_t + U_{h} (r_t \circ h_{t-1}) + b_h)$
\includegraphics[width=0.4\columnwidth]{images/GRU.png}
\end{minipage}}\\
\hl{\textbf{9.2: Differentiable Memory/Neural Turing Machine}}\\
\fbox{\begin{minipage}{\linewidth}
- Able to learn to read from and write arbitrary content to memory cells. \\
- To read, they take a weighted average of many cells. \\
$r\leftarrow \sum_i \alpha_i M_i,
\alpha\geq 0, \sum_i\alpha_i = 1$\\
- To write, they modify multiple cells by different amounts. \\
$M_i \leftarrow (1-\beta_i) M_i+\beta_i w, \beta_i\in[0;1]$\\
- Weights with nonzero derivatives (softmax) enables the functions controlling access to the memory to be optimized using GD.
\end{minipage}}
\hl{\textbf{9.3: Attention}}\\
\fbox{\begin{minipage}{\linewidth}
Selectively attend to inputs or feature representations computed from inputs; select what is relevant from the past in hindsight
\end{minipage}}
\hl{\textbf{9.4: Recursive Networks}}\\
\fbox{\begin{minipage}{\linewidth}
For a sequence of length $\tau$, the depth can be reduced from $\tau$ to $O(\log \tau)$.
\end{minipage}}
\hl{\textbf{10.1: Autoencoders}}\\
\fbox{\begin{minipage}{\linewidth}
Linear auto-encoding (hidden layer $\mathbf{z}\in\mathbf{R}^m$, input dimension $n$, data points $i=1,...,k$)\\
$\mathbf{x}\in\mathbf{R}^n\overset{\mathbf{C}}{\rightarrow}\mathbf{z}\in\mathbf{R}^m (m\leq n)\overset{\mathbf{D}}{\rightarrow}\mathbf{\hat{x}}\in\mathbf{R}^n
\overset{\mathcal{R}}{\rightarrow}\frac{1}{2}\|\mathbf{x}-\mathbf{\hat{x}}\|^2$\\
Optimal choice of $\mathbf{C}\in\mathbf{R}^{n\times m}$ and $\mathbf{D}\in\mathbf{R}^{m\times n}$ s.t. \\
$\frac{1}{2k}\sum_{k=1}^k\|\mathbf{x}_i-\mathbf{D}\mathbf{C}\mathbf{x}_i\|^2\leftarrow \min$
\end{minipage}}
Eckart-Young Theorem (for $m\leq \min(n,k)$)\\
\fbox{\begin{minipage}{\linewidth}
$\arg\min_{\mathbf{\hat{X}}:rank(\mathbf{\hat{X}})=m}\|\mathbf{X}-\mathbf{\hat{X}}\|^2_F=\mathbf{U}_m \cdot diag(\sigma_1,...,\sigma_m)\cdot \mathbf{V}^\top_m$ \\
No linear auto-encoder with $m$ hidden units can improve on SVD as $\text{rank}(CD)\leq m$ \\
Given data $\mathbf{X}=\mathbf{U} diag(\sigma_1,..,\sigma_n)\mathbf{V}^\top$. The choice $\mathbf{C}=\mathbf{U}^\top_m$ and $\mathbf{D}=\mathbf{U}_m$ minimizes the squared reconstruction error of a two layer linear eauto-encoder with $m$ hidden units. \\
$\tilde{D} \tilde{C} = (U_m A^{-1}) \cdot (A U_m^\top) = U_m U_m^\top$ \\
Solutions restricted to $\mathbf{D}=\mathbf{C}^\top$ (weight-sharing)\\
$\Rightarrow A^{-1}=A^\top$ (orthogonal) \\
$\Rightarrow$ mapping $x\rightarrow z$ only determined up to rotations.
\end{minipage}}
Non-linear auto-encoder\\
\fbox{\begin{minipage}{\linewidth}
$\min \mathbf{E}_\mathbf{x}[l(\mathbf{x},(H\circ G)(\mathbf{x})]$, e.g. $l(\mathbf{x},\mathbf{\hat{x}})=\frac{1}{2} \|\mathbf{x}-\mathbf{\hat{x}} \|^2$\\
Encoder: $G=F_l\circ \cdots \circ F_1:\mathbf{R}^n\rightarrow \mathbf{R}^m, \mathbf{x}\rightarrow \mathbf{z}:=\mathbf{x}^l$ \\
Decoder: $H=F_L\circ \cdots \circ F_{l+1}:\mathbf{R}^m\rightarrow \mathbf{R}^n, \mathbf{z}\rightarrow \mathbf{y}:=\mathbf{\hat{x}}$
\end{minipage}}
Denoising non-linear auto-encoder\\