-
Notifications
You must be signed in to change notification settings - Fork 3
/
matrix.hpp
213 lines (185 loc) · 5.85 KB
/
matrix.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#pragma once
namespace nall {
template<typename T, uint Rows, uint Cols>
struct Matrix {
static_assert(Rows > 0 && Cols > 0);
Matrix() = default;
Matrix(const Matrix&) = default;
Matrix(const initializer_list<T>& source) {
uint index = 0;
for(auto& value : source) {
if(index >= Rows * Cols) break;
values[index / Cols][index % Cols] = value;
}
}
operator array_span<T>() { return {values, Rows * Cols}; }
operator array_view<T>() const { return {values, Rows * Cols}; }
//1D matrices (for polynomials, etc)
auto operator[](uint row) -> T& { return values[row][0]; }
auto operator[](uint row) const -> T { return values[row][0]; }
//2D matrices
auto operator()(uint row, uint col) -> T& { return values[row][col]; }
auto operator()(uint row, uint col) const -> T { return values[row][col]; }
//operators
auto operator+() const -> Matrix {
Matrix result;
for(uint row : range(Rows)) {
for(uint col : range(Cols)) {
result(row, col) = +target(row, col);
}
}
return result;
}
auto operator-() const -> Matrix {
Matrix result;
for(uint row : range(Rows)) {
for(uint col : range(Cols)) {
result(row, col) = -target(row, col);
}
}
return result;
}
auto operator+(const Matrix& source) const -> Matrix {
Matrix result;
for(uint row : range(Rows)) {
for(uint col : range(Cols)) {
result(row, col) = target(row, col) + source(row, col);
}
}
return result;
}
auto operator-(const Matrix& source) const -> Matrix {
Matrix result;
for(uint row : range(Rows)) {
for(uint col : range(Cols)) {
result(row, col) = target(row, col) - source(row, col);
}
}
return result;
}
auto operator*(T source) const -> Matrix {
Matrix result;
for(uint row : range(Rows)) {
for(uint col : range(Cols)) {
result(row, col) = target(row, col) * source;
}
}
return result;
}
auto operator/(T source) const -> Matrix {
Matrix result;
for(uint row : range(Rows)) {
for(uint col : range(Cols)) {
result(row, col) = target(row, col) / source;
}
}
return result;
}
//warning: matrix multiplication is not commutative!
template<uint SourceRows, uint SourceCols>
auto operator*(const Matrix<T, SourceRows, SourceCols>& source) const -> Matrix<T, Rows, SourceCols> {
static_assert(Cols == SourceRows);
Matrix<T, Rows, SourceCols> result;
for(uint y : range(Rows)) {
for(uint x : range(SourceCols)) {
T sum{};
for(uint z : range(Cols)) {
sum += target(y, z) * source(z, x);
}
result(y, x) = sum;
}
}
return result;
}
template<uint SourceRows, uint SourceCols>
auto operator/(const Matrix<T, SourceRows, SourceCols>& source) const -> maybe<Matrix<T, Rows, SourceCols>> {
static_assert(Cols == SourceRows && SourceRows == SourceCols);
if(auto inverted = source.invert()) return operator*(inverted());
return {};
}
auto& operator+=(const Matrix& source) { return *this = operator+(source); }
auto& operator-=(const Matrix& source) { return *this = operator-(source); }
auto& operator*=(T source) { return *this = operator*(source); }
auto& operator/=(T source) { return *this = operator/(source); }
template<uint SourceRows, uint SourceCols>
auto& operator*=(const Matrix<T, SourceRows, SourceCols>& source) { return *this = operator*(source); }
//matrix division is not always possible (when matrix cannot be inverted), so operator/= is not provided
//algorithm: Gauss-Jordan
auto invert() const -> maybe<Matrix> {
static_assert(Rows == Cols);
Matrix source = *this;
Matrix result = identity();
const auto add = [&](uint targetRow, uint sourceRow, T factor = 1) {
for(uint col : range(Cols)) {
result(targetRow, col) += result(sourceRow, col) * factor;
source(targetRow, col) += source(sourceRow, col) * factor;
}
};
const auto sub = [&](uint targetRow, uint sourceRow, T factor = 1) {
for(uint col : range(Cols)) {
result(targetRow, col) -= result(sourceRow, col) * factor;
source(targetRow, col) -= source(sourceRow, col) * factor;
}
};
const auto mul = [&](uint row, T factor) {
for(uint col : range(Cols)) {
result(row, col) *= factor;
source(row, col) *= factor;
}
};
for(uint i : range(Cols)) {
if(source(i, i) == 0) {
for(uint row : range(Rows)) {
if(source(row, i) != 0) {
add(i, row);
break;
}
}
//matrix is not invertible:
if(source(i, i) == 0) return {};
}
mul(i, T{1} / source(i, i));
for(uint row : range(Rows)) {
if(row == i) continue;
sub(row, i, source(row, i));
}
}
return result;
}
auto transpose() const -> Matrix<T, Cols, Rows> {
Matrix<T, Cols, Rows> result;
for(uint row : range(Rows)) {
for(uint col : range(Cols)) {
result(col, row) = target(row, col);
}
}
return result;
}
static auto identity() -> Matrix {
static_assert(Rows == Cols);
Matrix result;
for(uint row : range(Rows)) {
for(uint col : range(Cols)) {
result(row, col) = row == col;
}
}
return result;
}
//debugging function: do not use in production code
template<uint Pad = 0>
auto _print() const -> void {
for(uint row : range(Rows)) {
nall::print("[ ");
for(uint col : range(Cols)) {
nall::print(pad(target(row, col), Pad, ' '), " ");
}
nall::print("]\n");
}
}
protected:
//same as operator(), but with easier to read syntax inside Matrix class
auto target(uint row, uint col) -> T& { return values[row][col]; }
auto target(uint row, uint col) const -> T { return values[row][col]; }
T values[Rows][Cols]{};
};
}