-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdataset.py
72 lines (67 loc) · 3.18 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
""" Custom PyTorch Datasets """
import torch
import dgl
from sklearn import preprocessing
""" Classification Dataset """
class DGLDatasetClass(torch.utils.data.Dataset):
def __init__(self, address):
self.address=address+".bin"
self.list_graphs, train_labels_masks_globals = dgl.load_graphs(self.address)
num_graphs =len(self.list_graphs)
self.labels = train_labels_masks_globals["labels"].view(num_graphs,-1)
self.masks = train_labels_masks_globals["masks"].view(num_graphs,-1)
self.globals = train_labels_masks_globals["globals"].view(num_graphs,-1)
def __len__(self):
return len(self.list_graphs)
def __getitem__(self, idx):
return self.list_graphs[idx], self.labels[idx], self.masks[idx], self.globals[idx]
""" Regression Dataset """
class DGLDatasetReg(torch.utils.data.Dataset):
def __init__(self, address, transform=None, train=False, scaler=None, scaler_regression=None):
self.train = train
self.scaler = scaler
self.data_set, train_labels_masks_globals = dgl.load_graphs(address+".bin")
num_graphs = len(self.data_set)
self.labels = train_labels_masks_globals["labels"].view(num_graphs,-1)
self.masks = train_labels_masks_globals["masks"].view(num_graphs,-1)
self.globals = train_labels_masks_globals["globals"].view(num_graphs,-1)
self.transform = transform
self.scaler_regression = scaler_regression
def scaler_method(self):
if self.train:
scaler = preprocessing.StandardScaler().fit(self.labels)
self.scaler = scaler
return self.scaler
def __len__(self):
return len(self.data_set)
def __getitem__(self, idx):
if self.scaler_regression:
""" With Scaler"""
return self.data_set[idx], torch.tensor(self.scaler.transform(self.labels)[idx]).float(), self.masks[idx], self.globals[idx]
else:
""" Without Scaler """
return self.data_set[idx], self.labels[idx].float(), self.masks[idx], self.globals[idx]
""" Tune Regression Dataset """
class TuneDatasetReg(torch.utils.data.Dataset):
def __init__(self, graphs_list, labels, masks, globals, train=False, scaler=None, scaler_regression=None):
self.train = train
self.scaler = scaler
self.data_set = graphs_list
self.labels = labels
self.masks = masks
self.globals = globals
self.scaler_regression = scaler_regression
def scaler_method(self):
if self.train:
scaler = preprocessing.StandardScaler().fit(self.labels)
self.scaler = scaler
return self.scaler
def __len__(self):
return len(self.data_set)
def __getitem__(self, idx):
if self.scaler_regression:
""" With Scaler"""
return self.data_set[idx], torch.tensor(self.scaler.transform(self.labels)[idx]).float(), self.masks[idx], self.globals[idx]
else:
""" Without Scaler """
return self.data_set[idx], self.labels[idx].float(), self.masks[idx], self.globals[idx]