-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLasagna_GAN.py
138 lines (126 loc) · 5.48 KB
/
Lasagna_GAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#Code taken from, and adjusted
#https://towardsdatascience.com/generating-modern-arts-using-generative-adversarial-network-gan-on-spell-39f67f83c7b4
from keras.layers import Input, Reshape, Dropout, Dense, Flatten, BatchNormalization, Activation, ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model, load_model
from keras.optimizers import Adam
import numpy as np
from PIL import Image
import os
# Preview image Frame
PREVIEW_ROWS = 4
PREVIEW_COLS = 7
PREVIEW_MARGIN = 4
SAVE_FREQ = 50
# Size vector to generate images from
NOISE_SIZE = 100
# Configuration
EPOCHS = 10000 # number of iterations
BATCH_SIZE = 32
GENERATE_RES = 3
IMAGE_SIZE = 128 # rows/cols
IMAGE_CHANNELS = 3
training_data = np.load('lasagna_data.npy')
def build_discriminator(image_shape):
model = Sequential()
model.add(Conv2D(32, kernel_size=3, strides=2,
input_shape=image_shape, padding='same'))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(64, kernel_size=3, strides=2, padding='same'))
model.add(ZeroPadding2D(padding=((0, 1), (0, 1))))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(128, kernel_size=3, strides=2, padding='same'))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(256, kernel_size=3, strides=1, padding='same'))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Conv2D(512, kernel_size=3, strides=1, padding='same'))
model.add(BatchNormalization(momentum=0.8))
model.add(LeakyReLU(alpha=0.2))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(1, activation='sigmoid'))
input_image = Input(shape=image_shape)
validity = model(input_image)
return Model(input_image, validity)
def build_generator(noise_size, channels):
model = Sequential()
model.add(Dense(4 * 4 * 256, activation='relu', input_dim=noise_size))
model.add(Reshape((4, 4, 256)))
model.add(UpSampling2D())
model.add(Conv2D(256, kernel_size=3, padding='same'))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation('relu'))
model.add(UpSampling2D())
model.add(Conv2D(256, kernel_size=3, padding='same'))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation('relu'))
for i in range(GENERATE_RES):
model.add(UpSampling2D())
model.add(Conv2D(256, kernel_size=3, padding='same'))
model.add(BatchNormalization(momentum=0.8))
model.add(Activation('relu'))
model.summary()
model.add(Conv2D(channels, kernel_size=3, padding='same'))
model.add(Activation('tanh'))
input = Input(shape=(noise_size,))
generated_image = model(input)
return Model(input, generated_image)
def save_images(cnt, noise):
image_array = np.full((
PREVIEW_MARGIN + (PREVIEW_ROWS * (IMAGE_SIZE + PREVIEW_MARGIN)),
PREVIEW_MARGIN + (PREVIEW_COLS * (IMAGE_SIZE + PREVIEW_MARGIN)), 3),
255, dtype=np.uint8)
generated_images = generator.predict(noise)
generated_images = 0.5 * generated_images + 0.5
image_count = 0
for row in range(PREVIEW_ROWS):
for col in range(PREVIEW_COLS):
r = row * (IMAGE_SIZE + PREVIEW_MARGIN) + PREVIEW_MARGIN
c = col * (IMAGE_SIZE + PREVIEW_MARGIN) + PREVIEW_MARGIN
image_array[r:r + IMAGE_SIZE, c:c +
IMAGE_SIZE] = generated_images[image_count] * 255
image_count += 1
output_path = 'output'
if not os.path.exists(output_path):
os.makedirs(output_path)
filename = os.path.join(output_path, f"trained-{cnt}.png")
im = Image.fromarray(image_array)
im.save(filename)
image_shape = (IMAGE_SIZE, IMAGE_SIZE, IMAGE_CHANNELS)
optimizer = Adam(1.5e-4, 0.5)
discriminator = build_discriminator(image_shape)
discriminator.compile(loss='binary_crossentropy',
optimizer=optimizer, metrics=['accuracy'])
generator = build_generator(NOISE_SIZE, IMAGE_CHANNELS)
random_input = Input(shape=(NOISE_SIZE,))
generated_image = generator(random_input)
discriminator.trainable = False
validity = discriminator(generated_image)
combined = Model(random_input, validity)
combined.compile(loss='binary_crossentropy',
optimizer=optimizer, metrics=['accuracy'])
y_real = np.ones((BATCH_SIZE, 1))
y_fake = np.zeros((BATCH_SIZE, 1))
fixed_noise = np.random.normal(0, 1, (PREVIEW_ROWS * PREVIEW_COLS, NOISE_SIZE))
cnt = 1
for epoch in range(EPOCHS):
idx = np.random.randint(0, training_data.shape[0], BATCH_SIZE)
x_real = training_data[idx]
noise= np.random.normal(0, 1, (BATCH_SIZE, NOISE_SIZE))
x_fake = generator.predict(noise)
discriminator_metric_real = discriminator.train_on_batch(x_real, y_real)
discriminator_metric_generated = discriminator.train_on_batch(x_fake, y_fake)
discriminator_metric = 0.5 * np.add(discriminator_metric_real, discriminator_metric_generated)
generator_metric = combined.train_on_batch(noise, y_real)
if epoch % SAVE_FREQ == 0:
save_images(cnt, fixed_noise)
cnt += 1
print(f'{epoch} epoch, Discriminator accuracy: {100* discriminator_metric[1]}, Generator accuracy: {100 * generator_metric[1]}')