-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEliminacion_gaussiana.py
67 lines (56 loc) · 1.23 KB
/
Eliminacion_gaussiana.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Triangulares
def soltrinf(A,b):
x = np.array(b)
for i in range(0,len(b)):
for j in range(0,i):
x[i]-=A[i][j]*x[j]
x[i]/=A[i][i]
return x
def soltrsup(A,b):
x = np.array(b)
n = len(b)
f = lambda x : n-1-x
for i in range(0,n):
for j in range(0,i):
x[f(i)]-=A[f(i)][f(j)]*x[f(j)]
x[f(i)]/=A[f(i)][f(i)]
return x
# Eliminacion Gaussiana
def egauss(A,b):
U = np.array(A)
y = np.array(b)
for i in range(0,len(b)):
for j in range(i+1,len(b)):
coef = U[j][i]/U[i][i]
for q in range(i,len(b)):
U[j][q]-=coef*U[i][q]
y[j]-=coef*y[i]
return [U,y]
def soleg(A,b):
sist = egauss(A,b)
return soltrsup(sist[0],sist[1])
import numpy as np
def test():
A = np.array([
[2,0,0,0,0],
[2,34,0,0,0],
[12,-123.3,23.123,0,0],
[1,0,0,123.12345,0],
[0.123,123.456,1.23,4,-123.5]
],dtype="float")
b = np.array([1,2,3,4,5],dtype="float")
print(f"{A @ soltrinf(A,b)} = {b}")
AT = np.transpose(A)
b2 = np.array([5,4,3,2,1],dtype="float")
print(f"{AT @ soltrsup(AT,b2)} = {b2}")
A3 = np.array([
[4,-1,0,-1,0,0],
[-1,4,-1,0,-1,0],
[0,-1,4,0,0,-1],
[-1,0,0,4,-1,0],
[0,-1,0,-1,4,-1],
[0,0,-1,0,-1,4]
],dtype="float")
b3 = np.array([1,1,1,0,12,0],dtype="float")
print(f"{A3 @ soleg(A3,b3)} = {b3}")
test()