-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransfer2teacher.py
304 lines (258 loc) · 9.23 KB
/
transfer2teacher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import argparse
import os
import socket
import time
import tensorboard_logger as tb_logger
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.optim as optim
from criterion.criterion import CrossEntropy_SNNL
from dataset import boe
from dataset import oct2
from helper.loops import train_SNNL as train, validate_SNNL as validate
from helper.utils import (
adjust_learning_rate,
load_model,
freeze,
model_name_parser,
part_freeze,
)
from models import model_dict
def parse_option():
hostname = socket.gethostname()
parser = argparse.ArgumentParser("argument for training")
parser.add_argument("--print_freq", type=int, default=10, help="print frequency")
parser.add_argument("--tb_freq", type=int, default=10, help="tb frequency")
parser.add_argument("--save_freq", type=int, default=100, help="save frequency")
parser.add_argument("--batch_size", type=int, default=45, help="batch_size")
parser.add_argument(
"--num_workers", type=int, default=4, help="num of workers to use"
)
parser.add_argument(
"--epochs", type=int, default=60, help="number of training epochs"
)
parser.add_argument("--info", type=str, default="", help="more infomation")
# optimization
parser.add_argument(
"--learning_rate", type=float, default=1e-3, help="learning rate"
)
parser.add_argument(
"--lr_decay_epochs",
type=str,
default="20,40",
help="where to decay lr, can be a list",
)
parser.add_argument(
"--lr_decay_rate", type=float, default=0.1, help="decay rate for learning rate"
)
parser.add_argument("--weight_decay", type=float, default=5e-4, help="weight decay")
# parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
# dataset
parser.add_argument(
"--model_s",
type=str,
default="resnet50",
choices=[
"resnet18",
"resnet34",
"resnet50",
"wrn_16_1",
"wrn_16_2",
"wrn_40_1",
"wrn_40_2",
"vgg8",
"vgg11",
"vgg13",
"vgg16",
"vgg19",
"MobileNetV2",
"ShuffleV1",
"ShuffleV2",
"resnext50_32x4d",
"resnext101_32x8d",
"wide_resnet50_2",
"wide_resnet101_2",
],
)
parser.add_argument(
"--path_t",
type=str,
default="./save/models/Teacher_resnet50_epochs30_alpha-5.0_T50_a=-5/resnet50_best.pth",
help="teacher model checkpoint",
)
parser.add_argument(
"--d_rep", type=int, default=128, help="dimension of representation layer"
)
parser.add_argument(
"--dataset",
type=str,
# default="oct2",
choices=["oct2", "boe", "zs", "hd"],
help="dataset",
)
parser.add_argument(
"-T", "--temperature", type=float, default=50, help="temperature"
)
parser.add_argument(
"-a", "--alpha", type=float, default=-5, help="alpha multiplier"
)
parser.add_argument("-t", "--trial", type=int, default=0, help="the experiment id")
parser.add_argument("--parallel_training", type=bool, default=False)
parser.add_argument(
"-m",
"--method",
type=str,
choices=["ALL", "FE", "HL"],
help="transfer learning method for teacher model",
)
opt = parser.parse_args()
# set different learning rate from these 4 models
if opt.model_s in ["MobileNetV2", "ShuffleV1", "ShuffleV2"]:
opt.learning_rate = 0.01
# set the path according to the environment
opt.model_path = "./save/models"
opt.tb_path = "./save/tensorboard"
iterations = opt.lr_decay_epochs.split(",")
opt.lr_decay_epochs = [int(it) for it in iterations]
opt.model_t = model_name_parser(opt.path_t)
method = opt.method
if method == "ALL":
opt.model_name = f"ALL_S_{opt.model_s}_T_{opt.model_t}_{opt.dataset}_{opt.info}"
elif method == "FE":
opt.model_name = f"FE_S_{opt.model_s}_T_{opt.model_t}_{opt.dataset}_{opt.info}"
elif method == "HL":
opt.model_name = f"HL_S_{opt.model_s}_T_{opt.model_t}_{opt.dataset}_{opt.info}"
opt.tb_folder = os.path.join(opt.tb_path, opt.model_name)
if not os.path.isdir(opt.tb_folder):
os.makedirs(opt.tb_folder)
opt.save_folder = os.path.join(opt.model_path, opt.model_name)
if not os.path.isdir(opt.save_folder):
os.makedirs(opt.save_folder)
return opt
def main():
best_acc = 0
opt = parse_option()
print(opt.path_t)
# tensorboard logger
logger = tb_logger.Logger(logdir=opt.tb_folder, flush_secs=2)
# dataloader
if opt.dataset in {"oct2", "hd", "zs"}:
train_loader, val_loader = oct2.get_oct2_dataloaders(
c_dataset=opt.dataset,
batch_size=opt.batch_size,
num_workers=opt.num_workers,
)
n_classes = 5
elif opt.dataset == "boe":
train_loader, val_loader = boe.get_boe_dataloaders(
batch_size=opt.batch_size, num_workers=opt.num_workers
)
n_classes = 3
else:
raise NotImplementedError(opt.dataset)
print(f"train set length:{len(train_loader.dataset)}")
print(f"test set length:{len(val_loader.dataset)}")
# exit()
# Teacher model
# model_t = load_teacher(opt.path_t, n_classes)
method = opt.method
if method == "ALL":
model = load_model(
model_dict=model_dict, model_path=opt.path_t, d_rep=opt.d_rep, n_cls=4
)
model.linear = torch.nn.Linear(in_features=opt.d_rep, out_features=n_classes)
elif method == "HL":
model = load_model(
model_dict=model_dict, model_path=opt.path_t, d_rep=opt.d_rep, n_cls=4
)
freeze(model)
model.linear = torch.nn.Linear(in_features=opt.d_rep, out_features=n_classes)
elif method == "FE":
model = load_model(
model_dict=model_dict, model_path=opt.path_t, d_rep=opt.d_rep, n_cls=4
)
model.linear = torch.nn.Linear(in_features=opt.d_rep, out_features=n_classes)
# check_parameters_to_train(model)
# for (i, (n, p)) in enumerate(model.named_parameters()):
# print(i, n)
# 129
part_freeze(model, 129)
# check_parameters_to_train(model)
optimizer = optim.Adam(
model.parameters(), lr=opt.learning_rate, weight_decay=opt.weight_decay
)
criterion = CrossEntropy_SNNL(T=opt.temperature, alpha=opt.alpha)
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
assert torch.cuda.is_available(), "Not with GPU"
model = model.to(device)
criterion = criterion.to(device)
cudnn.benchmark = True
if opt.parallel_training:
model = nn.DataParallel(model)
# routine
print("==> Start training...")
start_time = time.time()
for epoch in range(1, opt.epochs + 1):
adjust_learning_rate(epoch, opt, optimizer)
time1 = time.time()
train_acc, train_loss = train(
epoch,
train_loader,
model,
criterion,
optimizer,
device,
opt,
)
time2 = time.time()
print("epoch {}, total time {:.2f}".format(epoch, time2 - time1))
logger.log_value("train_acc", train_acc, epoch)
logger.log_value("train_loss", train_loss, epoch)
# test_acc, test_acc_top5, test_loss = validate(val_loader, model, criterion, opt)
test_acc, test_loss = validate(val_loader, model, criterion, opt)
logger.log_value("test_acc", test_acc, epoch)
# logger.log_value('test_acc_top5', test_acc_top5, epoch)
logger.log_value("test_losss", test_loss, epoch)
# save the best model
if test_acc > best_acc:
best_acc = test_acc
state = {
"epoch": epoch,
"model": model.state_dict(),
"best_acc": best_acc,
"optimizer": optimizer.state_dict(),
}
save_file = os.path.join(opt.save_folder, f"{opt.model_s}_best.pth")
print("saving the best model!")
torch.save(state, save_file)
# regular saving
if epoch % opt.save_freq == 0:
print("==> Saving...")
state = {
"epoch": epoch,
"model": model.state_dict(),
"accuracy": test_acc,
"optimizer": optimizer.state_dict(),
}
save_file = os.path.join(
opt.save_folder, "ckpt_epoch_{epoch}.pth".format(epoch=epoch)
)
torch.save(state, save_file)
print("-" * 30)
# This best accuracy is only for printing purpose.
# The results reported in the paper/README is from the last epoch.
print("best accuracy:", best_acc)
end_time = time.time()
print(time.strftime("%Hh:%Mm:%Ss", time.gmtime(end_time - start_time)))
# save model
state = {
"opt": opt,
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
}
save_file = os.path.join(opt.save_folder, f"{opt.model_s}_last.pth")
torch.save(state, save_file)
if __name__ == "__main__":
main()