-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathconfig.py
356 lines (315 loc) · 20.7 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
""" Config class for search/augment """
import argparse
import os
import genotypes as gt
from functools import partial
import torch
def get_parser(name):
""" make default formatted parser """
parser = argparse.ArgumentParser(name, formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# print default value always
parser.add_argument = partial(parser.add_argument, help=' ')
return parser
def parse_gpus(gpus):
if gpus == 'all':
return list(range(torch.cuda.device_count()))
else:
return [int(s) for s in gpus.split(',')]
class BaseConfig(argparse.Namespace):
def print_params(self, prtf=print):
prtf("")
prtf("Parameters:")
for attr, value in sorted(vars(self).items()):
prtf("{}={}".format(attr.upper(), value))
prtf("")
def as_markdown(self):
""" Return configs as markdown format """
text = "|name|value| \n|-|-| \n"
for attr, value in sorted(vars(self).items()):
text += "|{}|{}| \n".format(attr, value)
return text
class SearchConfig(BaseConfig):
def build_parser(self):
parser = get_parser("Search config")
parser.add_argument('--name', required=True)
parser.add_argument('--dataset', required=True, help='CIFAR10 / MNIST / FashionMNIST')
parser.add_argument('--num_classes', type=int, default=10, help='number of classes of dataset')
parser.add_argument('--data_path', default='./data/', help='CIFAR10 / MNIST / FashionMNIST')
parser.add_argument('--batch_size', type=int, default=64, help='batch size')
parser.add_argument('--w_lr', type=float, default=0.025, help='lr for weights')
parser.add_argument('--w_lr_min', type=float, default=0.001, help='minimum lr for weights')
parser.add_argument('--w_momentum', type=float, default=0.9, help='momentum for weights')
parser.add_argument('--w_weight_decay', type=float, default=3e-4, help='weight decay for weights')
parser.add_argument('--w_grad_clip', type=float, default=5., help='gradient clipping for weights')
parser.add_argument('--print_freq', type=int, default=50, help='print frequency')
parser.add_argument('--gpus', default='0', help='gpu device ids separated by comma. `all` indicates use all gpus.')
parser.add_argument('--epochs', type=int, default=50, help='# of training epochs')
parser.add_argument('--init_channels', type=int, default=16)
parser.add_argument('--layers', type=int, default=8, help='# of layers')
parser.add_argument('--seed', type=int, default=2, help='random seed')
parser.add_argument('--workers', type=int, default=4, help='# of workers')
parser.add_argument('--alpha_lr', type=float, default=3e-4, help='lr for alpha')
parser.add_argument('--alpha_weight_decay', type=float, default=1e-3, help='weight decay for alpha')
parser.add_argument('--lat_lamda', type=float, default=0, help='Lamda for alpha latency loss constraint')
parser.add_argument('--pretrained_path', help='Pretained model path')
parser.add_argument('--act_type', default='GateAct', help='Non-linear activation type')
parser.add_argument('--pool_type', default='GatePool', help='Pooling layer type')
parser.add_argument('--arch', default='vgg16_gated_bn', help='Model architecture type')
return parser
def __init__(self):
parser = self.build_parser()
args = parser.parse_args()
super().__init__(**vars(args))
# self.data_path = './data/'
self.path = os.path.join(f'searchs_{self.arch}', self.name + str("_lat_lmd_{:.0e}_lr{}ep{}".format(self.lat_lamda, self.w_lr, self.epochs)))
self.plot_path = os.path.join(self.path, 'plots')
self.gpus = parse_gpus(self.gpus)
class FinetuneConfig(BaseConfig):
def build_parser(self):
parser = get_parser("Finetune config")
parser.add_argument('--name', required=True)
parser.add_argument('--dataset', required=True, help='CIFAR10 / MNIST / FashionMNIST')
parser.add_argument('--num_classes', type=int, default=10, help='number of classes of dataset')
parser.add_argument('--data_path', default='./data/', help='CIFAR10 / MNIST / FashionMNIST')
parser.add_argument('--batch_size', type=int, default=64, help='batch size')
parser.add_argument('--w_lr', type=float, default=0.01, help='lr for weights')
parser.add_argument('--w_lr_min', type=float, default=0.001, help='minimum lr for weights')
parser.add_argument('--w_momentum', type=float, default=0.9, help='momentum for weights')
parser.add_argument('--w_weight_decay', type=float, default=5e-4, help='weight decay for weights')
parser.add_argument('--w_grad_clip', type=float, default=5., help='gradient clipping for weights')
parser.add_argument('--print_freq', type=int, default=50, help='print frequency')
parser.add_argument('--gpus', default='0', help='gpu device ids separated by comma. `all` indicates use all gpus.')
parser.add_argument('--epochs', type=int, default=100, help='# of training epochs')
# parser.add_argument('--init_channels', type=int, default=16)
# parser.add_argument('--layers', type=int, default=8, help='# of layers')
parser.add_argument('--seed', type=int, default=2, help='random seed')
parser.add_argument('--workers', type=int, default=4, help='# of workers')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)')
# parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set')
parser.add_argument('-e', '--evaluate', default='evaluate', type=str, metavar='PATH',
help='path to checkpoint (default: none)')
# parser.add_argument('--alpha_lr', type=float, default=3e-4, help='lr for alpha')
# parser.add_argument('--alpha_weight_decay', type=float, default=1e-3,
# help='weight decay for alpha')
parser.add_argument('--lat_lamda', type=float, default=0, help='Lamda for alpha latency loss constraint')
parser.add_argument('--pretrained_NAS_path', help='Pretained NAS model path')
parser.add_argument('--all_poly_avgpl', default=True, help='Pretained NAS model path')
parser.add_argument('--pretrained_path', help='Pretained model path')
parser.add_argument('--checkpoint_path', help='Checkpoint path')
parser.add_argument('--act_type', default='GateAct', help='Non-linear activation type')
parser.add_argument('--pool_type', default='GatePool', help='Pooling layer type')
parser.add_argument('--arch', default='vgg16_gated_bn', help='Model architecture type')
return parser
def __init__(self):
parser = self.build_parser()
args = parser.parse_args()
super().__init__(**vars(args))
# self.data_path = './data/'
# self.path = os.path.join(f'searchs_{self.arch}', self.name + str("_{:.0e}".format(self.lat_lamda) + '_Finetune'))
self.path = os.path.join('aaa')
self.plot_path = os.path.join(self.path, 'plots')
self.gpus = parse_gpus(self.gpus)
if self == "cifar10":
self.num_classes = 10
elif self == "cifar100":
self.num_classes = 100
class AugmentConfig(BaseConfig):
def build_parser(self):
parser = get_parser("Augment config")
parser.add_argument('--name', required=True)
parser.add_argument('--dataset', required=True, help='CIFAR10 / MNIST / FashionMNIST')
parser.add_argument('--batch_size', type=int, default=96, help='batch size')
parser.add_argument('--lr', type=float, default=0.025, help='lr for weights')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--weight_decay', type=float, default=3e-4, help='weight decay')
parser.add_argument('--grad_clip', type=float, default=5.,
help='gradient clipping for weights')
parser.add_argument('--print_freq', type=int, default=200, help='print frequency')
parser.add_argument('--gpus', default='0', help='gpu device ids separated by comma. '
'`all` indicates use all gpus.')
parser.add_argument('--epochs', type=int, default=600, help='# of training epochs')
parser.add_argument('--init_channels', type=int, default=36)
parser.add_argument('--layers', type=int, default=20, help='# of layers')
parser.add_argument('--seed', type=int, default=2, help='random seed')
parser.add_argument('--workers', type=int, default=4, help='# of workers')
parser.add_argument('--aux_weight', type=float, default=0.4, help='auxiliary loss weight')
parser.add_argument('--cutout_length', type=int, default=16, help='cutout length')
parser.add_argument('--drop_path_prob', type=float, default=0.2, help='drop path prob')
parser.add_argument('--genotype', required=True, help='Cell genotype')
return parser
def __init__(self):
parser = self.build_parser()
args = parser.parse_args()
super().__init__(**vars(args))
self.data_path = './data/'
self.path = os.path.join('augments', self.name)
self.genotype = gt.from_str(self.genotype)
self.gpus = parse_gpus(self.gpus)
class ImageNetConfig(BaseConfig):
def build_parser(self):
parser = get_parser("Train ImageNet config")
parser.add_argument('--name', default = "imagenet")
parser.add_argument('--data', metavar='DIR', default='/data/imagenet/',
help='path to dataset (default: imagenet)')
parser.add_argument('--arch', default='resnet18', help='Model architecture type')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=100, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=100, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
# parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
# help='evaluate model on validation set')
parser.add_argument('-e', '--evaluate', default='evaluate', type=str, metavar='PATH',
help='path to checkpoint (default: none)')
parser.add_argument('--world-size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--seed', default=0, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpus', default='0', help='gpu device ids separated by comma. `all` indicates use all gpus.')
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
parser.add_argument('--decay', type=int, default=30, help='Lamda for alpha latency loss constraint')
parser.add_argument('--pretrained_NAS_path', help='Pretained NAS model path')
parser.add_argument('--pretrained_path', help='Pretained model path')
parser.add_argument('--all_poly_avgpl', default=True, help='Pretained NAS model path')
parser.add_argument('--lat_lamda', type=float, default=0, help='Lamda for alpha latency loss constraint')
parser.add_argument('--act_type', default='GateAct', help='Non-linear activation type')
parser.add_argument('--pool_type', default='GatePool', help='Pooling layer type')
parser.add_argument('--ext', default='', type=str,
help='self-defined extension for saved location')
parser.add_argument('--cvg_epoch', type=float, default = 10, help='converge epoch for activation layer')
return parser
def __init__(self):
parser = self.build_parser()
args = parser.parse_args()
super().__init__(**vars(args))
self.path = os.path.join(f'searchs_{self.arch}_{self.name}',
f'{self.name}_{self.lat_lamda}_Finetune_lr{self.lr}_dcy{self.decay}{args.ext}')
self.plot_path = os.path.join(self.path, 'plots')
self.gpus = parse_gpus(self.gpus)
class ImageNetTestConfig(BaseConfig):
def build_parser(self):
parser = get_parser("Train ImageNet config")
parser.add_argument('--name', default = "imagenet")
parser.add_argument('--data', metavar='DIR', default='/data/imagenet/',
help='path to dataset (default: imagenet)')
parser.add_argument('--arch', default='resnet18', help='Model architecture type')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=100, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=100, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
# parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
# help='evaluate model on validation set')
parser.add_argument('-e', '--evaluate', default='evaluate', type=str, metavar='PATH',
help='path to checkpoint (default: none)')
parser.add_argument('--world-size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--seed', default=0, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpus', default='0', help='gpu device ids separated by comma. `all` indicates use all gpus.')
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
parser.add_argument('--decay', type=int, default=30, help='Lamda for alpha latency loss constraint')
parser.add_argument('--pretrained_NAS_path', help='Pretained NAS model path')
parser.add_argument('--pretrained_path', help='Pretained model path')
parser.add_argument('--all_poly_avgpl', default=True, help='Pretained NAS model path')
parser.add_argument('--lat_lamda', type=float, default=0, help='Lamda for alpha latency loss constraint')
parser.add_argument('--act_type', default='GateAct', help='Non-linear activation type')
parser.add_argument('--pool_type', default='GatePool', help='Pooling layer type')
parser.add_argument('--ext', default='', type=str,
help='self-defined extension for saved location')
parser.add_argument('--cvg_epoch', type=float, default = 10, help='converge epoch for activation layer')
return parser
def __init__(self):
parser = self.build_parser()
args = parser.parse_args()
args.resume = args.resume.split(':')[-1]
super().__init__(**vars(args))
self.path = os.path.join(f'searchs_test',
f'{args.ext}_')
print("Path:", self.path)
print("Evaluate:", self.evaluate)
self.plot_path = os.path.join(self.path, 'plots')
print("Resume path:", args.resume)
self.gpus = parse_gpus(self.gpus)
# exit()
class ImageNetEvalConfig(BaseConfig):
def build_parser(self):
parser = get_parser("Train ImageNet config")
parser.add_argument('--name', default = "imagenet")
parser.add_argument('--data', metavar='DIR', default='/data/imagenet/',
help='path to dataset (default: imagenet)')
parser.add_argument('--workers', type=int, default=4,
help='# of workers')
parser.add_argument('--arch', default='resnet18',
help='Model architecture type')
parser.add_argument('-b', '--batch-size', default=256, type=int,metavar='N',
help='batch-size')
parser.add_argument('-e', '--evaluate', default='evaluate', type=str, metavar='PATH',
help='path to checkpoint (default: none)')
parser.add_argument('--seed', default=0, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpus', default='0',
help='gpu device ids separated by comma. `all` indicates use all gpus.')
return parser
def __init__(self):
parser = self.build_parser()
args = parser.parse_args()
super().__init__(**vars(args))
self.path = os.path.join(f'eval_{self.name}',
f'{self.evaluate}')
self.plot_path = os.path.join(self.path, 'plots')
self.gpus = parse_gpus(self.gpus)