-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathalgorithmia.py
99 lines (83 loc) · 3.26 KB
/
algorithmia.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import Algorithmia
import json
import pickle
import random
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt, mpld3
from matplotlib import colors
import matplotlib.patches as mpatches
emot_list= list()
def get_emotion():
print("Getting emotion...")
# API call
input = bytearray(open("snapshots/pic.png", "rb").read())
client = Algorithmia.client('api-key')
algo = client.algo('deeplearning/EmotionRecognitionCNNMBP/1.0.1')
op = (algo.pipe(input).result)["results"]
# Returned from API call
if(op==[]):
current = "Neutral"
else:
emotion = ((op[0])["emotions"])
analyze = dict()
for emo in emotion:
analyze[str(emo["label"])] = float(emo["confidence"])
current = max(analyze, key=analyze.get)
# Color code emotions
emotion_color_dict = {'Neutral':11 , 'Sad':31 , 'Disgust':51 , 'Fear':61 , 'Surprise':41, 'Happy':21, 'Angry':1}
emot_list.append(emotion_color_dict[current])
print(emot_list)
return current
def get_playlist():
current = get_emotion()
#get playlist from emotion
with open("test.txt", "rb") as fp:
songnames = pickle.load(fp, encoding='latin1')
songlist = {1: [1,170], 2:[171,334], 3:[335,549], 4:[550, 740], 5:[741,903]}
if ((current == "Anger") | (current == "Fear")):
cluster_def = [[5, 2], [3, 7], [2, 12]]
elif(current == "Sad"):
cluster_def = [[3, 4], [4, 4], [2, 13]]
elif((current == "Neutral") | (current == "Disgust") | (current == "Surprise")):
cluster_def = [[3, 2], [4, 5], [2, 7], [1, 5]]
else:
cluster_def = [[2, 10], [4, 5], [1, 6]]
playlist = list()
for sets in cluster_def:
for i in range(sets[1]):
ss = random.randint(songlist[sets[0]][0], songlist[sets[0]][1]);
playlist.append(str(ss).zfill(3)+".mp3_"+songnames[ss]);
return playlist
def get_emotion_grid():
data = np.full((5,10), 81)
a = 0
#color according to emotion
for i in range(0,5):
for q in range(0,10):
if(a == len(emot_list)):
break
print(i, q, a)
data[i,q] = emot_list[a]
a = a+1
cmap = colors.ListedColormap(['red', 'blue', 'yellow', 'green', 'cyan', 'magenta', 'black', 'white'])
bounds = [0,10,20,30,40,50,60]
norm = colors.BoundaryNorm(bounds, cmap.N)
fig, ax = plt.subplots()
ax.imshow(data, cmap=cmap, norm=norm)
# draw gridlines
ax.grid(which='major', axis='both', linestyle='-', color='k', linewidth=2)
ax.set_xticks(np.arange(-.5, 10, 1));
ax.set_yticks(np.arange(-.5, 10, 1));
#add legend
red_patch = mpatches.Patch(color='red', label='Angry')
blue_patch = mpatches.Patch(color='blue', label='Neutral')
yellow_patch = mpatches.Patch(color='yellow', label='Happy')
green_patch = mpatches.Patch(color='green', label='Sad')
cyan_patch = mpatches.Patch(color='cyan', label='Surprise')
magenta_patch = mpatches.Patch(color='magenta', label='Disgust')
black_patch = mpatches.Patch(color='black', label='Fear')
plt.legend(handles=[red_patch, blue_patch, yellow_patch, green_patch, cyan_patch, magenta_patch, black_patch])
#save image
plt.savefig("static/graph.jpg")
plt.show()