- Onnx
- Tensor
The onnx
object is the exported object of the module. It's available in global context (window.onnx
in browser, global.onnx
in Node.js) after require/import 'onnxjs' module, or imported from a <script> tag
.
-
See Tensor.
-
See InferenceSession.
-
Customizes settings for all available backends.
ONNX.js
currently supports three types of backend - cpu (pure JavaScript backend), webgl (WebGL backend), and wasm (WebAssembly backend).A string or an array of strings that indicate a hint to use backend(s).
An object specifying CPU backend settings. Currently no members are available.
An object specifying WebGL backend settings. The supported member variables are:
-
contextId (
'webgl'|'webgl2'|'experimental-webgl'
)Optional. Force the WebGL Context ID.
An object specifying WebAssembly backend settings. The supported member variables are:
-
worker (
number
)Optional. Specifies the number of web workers to run in background threads. If not set, run with number of
(CPU cores - 1)
workers. -
cpuFallback (
boolean
)Optional. Determines whether to fall back to use CPU backend if WebAssembly backend is missing certain ONNX operators. Default is set to true.
-
-
Represent runtime environment settings and status of ONNX.js
A global flag to indicate whether to run
ONNX.js
in debug mode.
An InferenceSession
encapsulates the environment for ONNX.js
operations to execute. It loads and runs ONNX
models with the desired configurations.
To configure an InferenceSession
, use an object with the following parameters-
-
backendHint (
string
) Specify a preferred backend to start anInferenceSession
. Current available backend hints are:'cpu'
: CPU backend'wasm'
: WebAssembly backend'webgl'
: WebGL backend If not set, the backend will be determined by the platform and environment.
-
profiler (
Config.Profiler
) An object specifying profiler configurations that used in anInferenceSession
. If not set, run profiler in default config. Detailed settings are listed in [Config.Profiler
] (#Config.Profiler).
Represents the configuration of the profiler that used in an InferenceSession
. The supported member variables are:
- **maxNumberEvents** (`number`)
Optional. The max number of events to be recorded. Default = 10000.
- **flushBatchSize** (`number`)
Optional. The maximum size of a batch to flush. Default = 10.
- **flushIntervalInMilliseconds** (`number`)
Optional. The maximum interval in milliseconds to flush. Default = 5000.
-
Construct a new
InferenceSession
object with configuration.Parameters
-
config (
{backendHint?: string, Profiler?: Config.profiler}
):Optional. Specify configuration for creating a new inference session. If not set, the session will run in default settings.
Returns
InferenceSession
object
Examples
// Imports import {InferenceSession, Tensor} from 'onnxjs';
// Create an Inference Session with CPU backend const session = new InferenceSession({backendHint: 'cpu'});
-
-
To use an
InferenceSession
to runONNX
models, start with loading a model from a.onnx
model file, and thenrun()
with your input data.Load ONNX model from an onnx model source asynchronously.
Parameters
-
arg0 (
string
|Blob
|ArrayBuffer
|Uint8Array
)The Onnx model representation types. Currently supports the following four types.
string
: URI representation of the model.Blob
: Blob object representation.ArrayBuffer
: ArrayBuffer representation. If in this type,byteOffset
andlength
can be set.Uint8Array
: Uint8Array representation.
-
byteOffset (
number
): Optional. Byte offset forArrayBuffer
-
length (
number
): Optional. Length param forArrayBuffer
Returns
Promise<void>
Examples
// Create an Inference Session with default settings. const session = new InferenceSession(); // load model from uri const outputData = await session.loadModel('https://some.domain.com/models/myModel.onnx');
Execute the model asynchronously with the given input data and output names.
Parameters
-
inputs (
ReadonlyMap<string,Tensor>
|{readonly [name: string]: Tensor}
|ReadonlyArray<Tensor>
):Representation of inputs in one of the accepted format, with or without input names. The input
Tensors
should be in the same shapes and orders as the inputs specified in the loadedONNX
model. -
options (
ReadonlyArray<string>
): Optional. Contains a list of output names. See more inRunOptions
. If not specified, use the model's output list.
Returns
Promise<ReadonlyMap<string, Tensor>>
Examples
const inputs = [new Tensor([1, 2], 'float32')]; const output1 = await session.run(inputs); // run with ReadonlyArray<Tensor>
Options for running inference.
-
outputNames (
ReadonlyArray<string>
)Optional. Represent a list of output names as an array of string. This must be a subset of the output list defined by the model. If not specified, use the model's output list.
-
-
Start profiling for current session.
// Create an Inference Session with default settings. const session = new InferenceSession(); // start profiling session.startProfiling();
Stop profiling for current session.
// Create an Inference Session with default settings. const session = new InferenceSession(); // end profiling session.endProfiling();
Tensor is a representation of vectors, matrices and n-dimension data in ONNX.js
. Tensors are used in InferenceSession
as inputs for models to run.
-
Creates a new Tensor with the specified data, type and shape.
Parameters
-
data (
Uint8Array
|Float32Array
|Int32Array
|string
|boolean[]
|number[]
):Initial data to put in a Tensor.
-
type (
'bool'
|'float32'
|'int32'
|'string'
):Type of the Tensor. Must be consistent with the
data
type or aTypeError
will be thrown.String Data Type 'bool'
Uint8Array
|boolean[]
'float32'
Float32Array
|number[]
'int32'
Int32Array
|number[]
'string'
string[]
-
dims (
ReadonlyArray<number>
):Optional. The shape of the Tensor in a array of Integers. Current implementation supports up to 6 dimensions. If not set, a 1-D Tensor will be created with length inferred from
data
.
Returns
Tensor
object.
Examples
// Create a int32-typed 1D tensor with 2 elements t = new Tensor([2, 3], 'int32');
// Create a int32-typed 1D tensor with 10 elements t = new Tensor(new Int32Array(10), 'int32');
// Create a string-typed 1D tensor with 3 elements t = new Tensor(['a', 'b', 'c'], 'string');
// Create a 3*2 int32 matrix with specified values. t = new Tensor([2.0, 3.0, 4.0, 5.0, 6.0, 7.0], 'float32', [3, 2]);
-
-
Each
Tensor
contains the following properties. These can be useful in calculations involving Tensors.-
data (
Uint8Array
|Float32Array
|Int32Array
|string
)Returns the underlying raw data in Tensor. Note that to modify the data inside Tensor, use the
get()
/set()
functions. -
dims (
ReadonlyArray<number>
)Returns the dimension/shape of the Tensor.
-
type (
'bool'
|'float32'
|'int32'
|'string'
)Returns a string representing the underlying data type of the Tensor.
-
size (
int
)Returns the size of Tensor in logical elements.
-
-
To access elements in Tensor, use the
get()
/set()
methods.Gets a Tensor element by index from a
Tensor
object.Parameters
-
...indices (
i, j, k...
):Index in spread syntax. The index should be within
Tensor
'sdims
or aRangeError
will be thrown.
Returns
- Tensor element.
Example
const t = new Tensor([1, 3, 2], 'int32', [1, 3, 1]); const res = t.get(0, 1, 0); // res = 3
Gets a Tensor element by index from a
Tensor
object.Parameters
-
indices (
number[]
):Index in array. The index should be within
Tensor
'sdims
or aRangeError
will be thrown.
Returns
- Tensor element.
Example
const t = new Tensor([1, 3, 2], 'int32', [1, 3, 1]); const res = t.get([0, 1, 0]); // res = 3
Sets a Tensor element by index to a
Tensor
object.Parameters
-
value (
boolean
|number
|string
):The value to set. The value type must be consistent with the data type in tensor or a
TypeError
will be thrown. -
...indices (
i, j, k...
):Index of the element in spread syntax. TThe index should be within
Tensor
'sdims
or aRangeError
will be thrown.
Returns
void
Example
t = new Tensor([1, 3, 2], 'int32', [1, 3, 1]); t.set(2, 0, 1, 0); // Sets element at [0, 1, 0] to 2. t.data = [1, 2, 2] t.set(3, 0, 2, 0); // Sets element at [0, 2, 0] to 3. t.data = [1, 2, 3]
Sets a Tensor element by index to a
Tensor
object.Parameters
-
value (
boolean
|number
|string
):The value to set. The value type must be consistent with the data type in tensor or a
TypeError
will be thrown. -
indices (
number[]
):Index of the element to set. The index should be within
Tensor
'sdims
or aRangeError
will be thrown.
Returns
void
Example
t = new Tensor([1, 3, 2], 'int32', [1, 3, 1]); t.set(2, [0, 1, 0]); // Sets element at [0, 1, 0] to 2. t.data = [1, 2, 2] t.set(3, [0, 2, 0]); // Sets element at [0, 2, 0] to 3. t.data = [1, 2, 3]
-