-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathfind_kth_smallest_num.py
64 lines (57 loc) · 1.91 KB
/
find_kth_smallest_num.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#!/usr/bin/python
# Date: 2019-01-27
#
# Description:
# Find kth smallest number from an unsorted array.
#
# Approach:
# Quick sort approach is used. The idea is, not to do complete quicksort, but
# stop at the point where pivot itself is k’th smallest element. Also, not to
# recur for both left and right sides of pivot, but recur for one of them
# according to the position of pivot.
#
# Note:
# For kth largest number, we can find (n-k)th smallest num - which is
# same as kth largest.
#
# Reference:
# Method 4: https://www.geeksforgeeks.org/kth-smallestlargest-element-unsorted-array/
#
# Heap method is also given at above link which solves problem in
# O(k + (n-k)logk) complexity in worst case: Level-2/find_kth_largest_num.py
#
# Complexity:
# Average case - O(N)
# Worst case - O(N^2)
def partition(A, left, right):
"""
Picks the last element from array - A[right] and places it to correct
position(with respect to ascending order) and returns index of that position.
"""
pivot = A[right]
i = left # Elements smaller than pivot
for j in range(left, right + 1):
if A[j] < pivot:
A[i], A[j] = A[j], A[i]
i += 1
A[i], A[right] = A[right], A[i] # Move pivot to correct position
return i
def select(A, left, right, k):
pivot_idx = partition(A, left, right)
if pivot_idx == k:
return A[k]
elif pivot_idx > k:
return select(A, left, pivot_idx - 1, k) # Check left sub array
return select(A, pivot_idx + 1, right, k) # Check right sub array
def kthSmallest(A, k):
"""Returns kth(0 to len(A) - 1) smallest number in given array."""
if k >= len(A):
return None
return select(A, 0, len(A) - 1, k)
A = [12, 3, 5, 7, 4, 19, 26]
sorted_nums = sorted(A)
assert kthSmallest(A, 0) == sorted_nums[0]
assert kthSmallest(A, 2) == sorted_nums[2]
assert kthSmallest(A, 3) == sorted_nums[3]
assert kthSmallest(A, 6) == sorted_nums[6]
assert kthSmallest(A, 7) == None