forked from goodfeli/adversarial
-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathparzen_ll.py
176 lines (140 loc) · 5.55 KB
/
parzen_ll.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import argparse
import time
import gc
import numpy
import theano
import theano.tensor as T
from pylearn2.utils import serial
from pylearn2.config import yaml_parse
from pylearn2.datasets.mnist import MNIST
from pylearn2.datasets.tfd import TFD
from adversarial.lfw.dataset import LFW
def get_nll(x, parzen, batch_size=10):
"""
Credit: Yann N. Dauphin
"""
inds = range(x.shape[0])
n_batches = int(numpy.ceil(float(len(inds)) / batch_size))
times = []
nlls = []
for i in range(n_batches):
begin = time.time()
nll = parzen(x[inds[i:i + batch_size]])
end = time.time()
times.append(end-begin)
nlls.extend(nll)
if i % 10 == 0:
print i, numpy.mean(times), numpy.mean(nlls)
return numpy.array(nlls)
def log_mean_exp(a):
"""
Credit: Yann N. Dauphin
"""
max_ = a.max(1)
return max_ + T.log(T.exp(a - max_.dimshuffle(0, 'x')).mean(1))
def theano_parzen(mu, sigma):
"""
Credit: Yann N. Dauphin
"""
x = T.matrix()
mu = theano.shared(mu)
a = ( x.dimshuffle(0, 'x', 1) - mu.dimshuffle('x', 0, 1) ) / sigma
E = log_mean_exp(-0.5*(a**2).sum(2))
Z = mu.shape[1] * T.log(sigma * numpy.sqrt(numpy.pi * 2))
return theano.function([x], E - Z)
def cross_validate_sigma(samples, data, sigmas, batch_size):
lls = []
for sigma in sigmas:
print sigma
parzen = theano_parzen(samples, sigma)
tmp = get_nll(data, parzen, batch_size = batch_size)
lls.append(numpy.asarray(tmp).mean())
del parzen
gc.collect()
ind = numpy.argmax(lls)
return sigmas[ind]
def get_valid(ds, limit_size = -1, fold = 0):
if ds == 'mnist':
data = MNIST('train', start=50000, stop=60000)
return data.X[:limit_size]
elif ds == 'tfd':
data = TFD('valid', fold = fold, scale=True)
return data.X
elif ds == 'lfwcrop':
# HACK
return LFW(axes=('c', 0, 1, 'b'),
gcn=55,
lfw_path='/afs/cs.stanford.edu/u/jgauthie/scr/lfwcrop_color/faces32',
filelist_path='/afs/cs.stanford.edu/u/jgauthie/scr/lfwcrop_color/filelist.dev.ids.txt',
embedding_file='/afs/cs.stanford.edu/u/jgauthie/scr/lfw-lsa/LFW_attributes_30d.npz',
img_shape=(3, 32, 32)).X
else:
raise ValueError("Unknow dataset: {}".format(args.dataet))
def get_test(ds, test, fold=0):
if ds == 'mnist':
return test.get_test_set()
elif ds == 'tfd':
return test.get_test_set(fold=fold)
elif ds == 'lfwcrop':
# HACK
return LFW(axes=test.axes,
gcn=test.gcn,
lfw_path='/afs/cs.stanford.edu/u/jgauthie/scr/lfwcrop_color/faces32',
filelist_path='/afs/cs.stanford.edu/u/jgauthie/scr/lfwcrop_color/filelist.test.ids.txt',
embedding_file='/afs/cs.stanford.edu/u/jgauthie/scr/lfw-lsa/LFW_attributes_30d.npz',
img_shape=test.img_shape)
else:
raise ValueError("Unknow dataset: {}".format(args.dataet))
def main():
parser = argparse.ArgumentParser(description = 'Parzen window, log-likelihood estimator')
parser.add_argument('-p', '--path', help='model path')
parser.add_argument('-s', '--sigma', default = None)
parser.add_argument('-d', '--dataset', choices=['mnist', 'tfd', 'lfwcrop'])
parser.add_argument('-f', '--fold', default = 0, type=int)
parser.add_argument('-v', '--valid', default = False, action='store_true')
parser.add_argument('-n', '--num_samples', default=10000, type=int)
parser.add_argument('-l', '--limit_size', default=1000, type=int)
parser.add_argument('-b', '--batch_size', default=100, type=int)
parser.add_argument('-c', '--cross_val', default=10, type=int,
help="Number of cross valiation folds")
parser.add_argument('--sigma_start', default=-1, type=float)
parser.add_argument('--sigma_end', default=0., type=float)
args = parser.parse_args()
# load model
model = serial.load(args.path)
src = model.dataset_yaml_src
batch_size = args.batch_size
model.set_batch_size(batch_size)
# load test set
test = yaml_parse.load(src)
test = get_test(args.dataset, test, args.fold)
# generate samples
samples = model.generator.sample(args.num_samples).eval()
output_space = model.generator.mlp.get_output_space()
if 'Conv2D' in str(output_space):
samples = output_space.convert(samples, output_space.axes, ('b', 0, 1, 'c'))
samples = samples.reshape((samples.shape[0], numpy.prod(samples.shape[1:])))
del model
gc.collect()
# cross validate sigma
if args.sigma is None:
valid = get_valid(args.dataset, limit_size = args.limit_size, fold = args.fold)
sigma_range = numpy.logspace(args.sigma_start, args.sigma_end, num=args.cross_val)
sigma = cross_validate_sigma(samples, valid, sigma_range, batch_size)
else:
sigma = float(args.sigma)
print "Using Sigma: %f" % sigma
gc.collect()
# fit and evaulate
parzen = theano_parzen(samples, sigma)
ll = get_nll(test.X, parzen, batch_size = batch_size)
se = ll.std() / numpy.sqrt(test.X.shape[0])
print "Log-Likelihood of test set = %f, se: %f" % (ll.mean(), se)
# valid
if args.valid:
valid = get_valid(args.dataset)
ll = get_nll(valid, parzen, batch_size = batch_size)
se = ll.std() / numpy.sqrt(valid.shape[0])
print "Log-Likelihood of valid set = %f, se: %f" % (ll.mean(), se)
if __name__ == "__main__":
main()