-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvec3.h
304 lines (251 loc) · 7.47 KB
/
vec3.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#pragma once
#include <cmath>
#include <iostream>
class vec3
{
public:
double e[3];
public:
vec3() : e{0,0,0} {}
explicit vec3(double e0, double e1, double e2) : e{e0, e1, e2} {}
explicit vec3(double val) : e{val, val, val} {}
// double x() const noexcept { return e[0]; }
// double y() const noexcept { return e[1]; }
// double z() const noexcept { return e[2]; }
vec3 operator-() const noexcept {
return vec3(-e[0], -e[1], -e[2]);
}
double operator[](size_t i) const noexcept {
return e[i];
}
double& operator[](size_t i) noexcept
{
return e[i];
}
double x() const noexcept
{
return e[0];
}
double& x() noexcept
{
return e[0];
}
double y() const noexcept
{
return e[1];
}
double& y() noexcept
{
return e[1];
}
double z() const noexcept
{
return e[2];
}
double& z() noexcept
{
return e[2];
}
vec3 operator*(double t) noexcept
{
return vec3{e[0] * t, e[1] * t, e[2] * t};
}
vec3& operator+=(const vec3& v) noexcept
{
e[0] += v.e[0];
e[1] += v.e[1];
e[2] += v.e[2];
return *this;
}
vec3& operator*=(double t) noexcept
{
e[0] *= t;
e[1] *= t;
e[2] *= t;
return *this;
}
vec3& operator/=(double t) noexcept
{
return *this *= 1 / t;
}
double length_squared() const noexcept
{
return e[0] * e[0] + e[1] * e[1] + e[2] * e[2];
}
double length() const noexcept
{
return std::sqrt(length_squared());
}
// vec3 normalize() noexcept const
// {
// return vec3{e[0], e[1], e[2]} / length();
// }
static vec3 random()
{
return vec3(
random_double(),
random_double(),
random_double()
);
}
static vec3 random(
double min, double max
)
{
return vec3(
random_double(min, max),
random_double(min, max),
random_double(min, max)
);
}
bool near_zero() const
{
// Return true if the vector is close to zero
static auto thresh = 1e-8;
return (std::fabs(e[0]) < thresh &&
std::fabs(e[1]) < thresh &&
std::fabs(e[2]) < thresh);
}
friend std::ostream& operator<<(std::ostream&out, const vec3& vec);
friend vec3 operator*(double t, const vec3& vec);
};
// a alias type name for vec3
using point3 = vec3;
inline std::ostream& operator<<(std::ostream& out, const vec3& vec)
{
out << vec.e[0] << " " << vec.e[1] << " " << vec.e[2];
return out;
}
inline vec3 operator+(const vec3& u, const vec3& v)
{
return vec3{u.e[0] + v.e[0], u.e[1] + v.e[1], u.e[2] + v.e[2]};
}
inline vec3 operator-(const vec3& u, const vec3& v)
{
return vec3{u.e[0] - v.e[0], u.e[1] - v.e[1], u.e[2] - v.e[2]};
}
inline vec3 operator*(const vec3& u, const vec3& v)
{
return vec3{u.e[0] * v.e[0], u.e[1] * v.e[1], u.e[2] * v.e[2]};
}
inline vec3 operator*(double t, const vec3& v)
{
return vec3{v.e[0] * t, v.e[1] * t, v.e[2] * t};
}
inline vec3 operator/(const vec3& v, double t)
{
return ( 1 / t ) * v;
}
inline double dot(const vec3& u, const vec3& v)
{
return u.e[0] * v.e[0] + u.e[1] * v.e[1] + u.e[2] * v.e[2];
}
inline vec3 cross(const vec3& u, const vec3& v)
{
vec3 res;
res.e[0] = u.e[1] * v.e[2] - u.e[2] * v.e[1];
res.e[1] = u.e[2] * v.e[0] - u.e[0] * v.e[2];
res.e[2] = u.e[0] * v.e[1] - u.e[1] * v.e[0];
return res;
}
inline vec3 normalize(const vec3& v)
{
return v / v.length();
}
inline vec3 unit_vector(const vec3& v)
{
return normalize(v);
}
inline vec3 random_in_unit_sphere()
{
while(true)
{
auto p = vec3::random(-1, 1);
if(p.length_squared() < 1)
return p;
}
}
inline vec3 random_in_unit_disk()
{
while(true)
{
auto p = vec3(random_double(-1, 1), random_double(-1, 1), 0);
if(p.length_squared() < 1)
return p;
}
}
inline vec3 random_unit_vector()
{
return normalize(random_in_unit_sphere());
}
inline vec3 random_on_hemisphere(const vec3& normal)
{
vec3 on_unit_sphere_vec3 = random_unit_vector();
if(dot(normal, on_unit_sphere_vec3) > 0.0f)
// Same Side
return on_unit_sphere_vec3;
else
return - on_unit_sphere_vec3;
}
inline vec3 my_reflect(const vec3& v, const vec3& n)
{
auto this_v = v;
auto this_n = n;
if(dot(normalize(this_n), normalize(this_v)) > 0.0f)
{
this_v = - v;
}
// https://raytracing.github.io/images/fig-1.15-reflection.jpg
// cos_theta
auto cos_theta = dot(normalize(this_n), normalize(this_v));
// theta + phi = pi
// theta = pi - phi
// cos_theta = cos(pi - phi) = cos(pi)cos(phi) + sin(pi)sin(phi) = - cos(phi)
// cos(phi) = - cos_theta
auto cos_phi = - cos_theta;
auto b = - this_v * cos_phi;
return this_v + 2 * b;
}
inline vec3 reflect(const vec3& v, const vec3& n)
{
// https://www.cnblogs.com/graphics/archive/2013/02/21/2920627.html
return v - 2 * dot(v, n) * n;
}
// inline vec3 refract(const vec3& R_in, const vec3& normal, double param)
// {
// // R_in is the unit vector from outside to point the hit point
// // normal is the hit point normal
// // param is the outside_refract_param / inside_refract_param
// auto normalized_Rin = normalize(R_in);
// auto normalized_normal = normalize(normal);
// auto cos_theta = std::fmin(dot(- normalized_Rin, normalized_normal), 1.0f);
// auto R_perp = param * (normalized_Rin + cos_theta * normalized_normal);
// auto R_prep_lenthg_squared = R_perp.length_squared();
// auto R_parallel = vec3 {
// - std::sqrt(std::fabs(1.0f - R_prep_lenthg_squared * normalized_normal.x())),
// - std::sqrt(std::fabs(1.0f - R_prep_lenthg_squared * normalized_normal.y())),
// - std::sqrt(std::fabs(1.0f - R_prep_lenthg_squared * normalized_normal.z()))
// };
// return R_parallel + R_perp;
// }
inline vec3 refract2(const vec3& uv, const vec3& n, double etai_over_etat)
{
auto cos_theta = std::fmin(1.0, dot(-uv, n));
vec3 r_out_perp = etai_over_etat * (uv + cos_theta * n);
vec3 r_out_parallel = - std::sqrt(std::fabs(1.0f - r_out_perp.length_squared())) * n;
return r_out_perp + r_out_parallel;
}
inline vec3 refract(const vec3& R_in, const vec3& normal, double param)
{
// R_in is the unit vector from outside to point the hit point
// normal is the hit point normal
// param is the outside_refract_param / inside_refract_param
auto normalized_Rin = normalize(R_in);
auto normalized_normal = normalize(normal);
auto cos_theta = std::fmin(dot(-normalized_Rin, normalized_normal), 1.0f);
vec3 R_perp = param * (normalized_Rin + cos_theta * normalized_normal);
// Ensure no negative value under sqrt
auto R_perp_length_squared = R_perp.length_squared();
vec3 R_parallel = -std::sqrt(std::fabs(1.0f - R_perp_length_squared)) * normalized_normal;
return R_parallel + R_perp;
}