-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLatencyBalanceEval.py
145 lines (115 loc) · 5.28 KB
/
LatencyBalanceEval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# This file is part of GenMap and released under the MIT License, see LICENSE.
# Author: Takuya Kojima
from EvalBase import EvalBase
from DataPathAnalysis import DataPathAnalysis
import statistics
import signal
import os
import networkx as nx
PENALTY_COST = 1000
main_pid = os.getpid()
class LatencyBalanceEval(EvalBase):
class DependencyError (Exception):
pass
def __init__(self):
pass
@staticmethod
def eval(CGRA, app, sim_params, individual, **info):
"""Return latency balance
Args:
CGRA (PEArrayModel): A model of the CGRA
app (Application): An application to be optimized
sim_params (SimParameters): parameters for some simulations
individual (Individual): An individual to be evaluated
Options:
mode (str): to select evaluation mode
"max_lat_diff" (default): max latency difference
for all nodes
"sum_lat_diff": sum of latency
difference for all nodes
"max_path_diff": difference btw the longest data path length
& shortest one
"sum_path_diff": sum of path length differences from
the shortest path
Returns:
float: evaluated value for the specified mode
"""
if individual.isValid() == False:
return PENALTY_COST
eval_modes = {"max_lat_diff": LatencyBalanceEval.calc_max_lat_diff,
"sum_lat_diff": LatencyBalanceEval.calc_sum_lat_diff,
"max_path_diff": LatencyBalanceEval.calc_max_path_diff,
"sum_path_diff": LatencyBalanceEval.calc_sum_path_diff}
# get delay_table
# key: node name of ALU
# value: delay value
op_attr = nx.get_node_attributes(app.getCompSubGraph(), "opcode")
delay_table = {CGRA.getNodeName("ALU", pos): \
sim_params.delay_info[op_attr[op_label]][0] \
for op_label, pos in individual.mapping.items()}
for v in individual.routed_graph.nodes():
if not v in delay_table.keys():
if CGRA.isALU(v):
delay_table[v] = sim_params.delay_info[CGRA.getRoutingOpcode(v)][0]
else:
delay_table[v] = 0
mode = "max_lat_diff" # defualt
if "mode" in info.keys():
if info["mode"] in eval_modes.keys():
mode = info["mode"]
else:
print("Error: unknown mode is specified for latency balance evaluation:",
info["mode"])
os.kill(main_pid, signal.SIGUSR1)
return eval_modes[mode](CGRA, individual, delay_table)
@staticmethod
def calc_max_path_diff(CGRA, individual, delay_table):
len_list = [sum([delay_table[e] for e in dp])\
for dp in DataPathAnalysis.get_data_path(CGRA, individual)]
return max(len_list) - min(len_list)
@staticmethod
def calc_sum_path_diff(CGRA, individual, delay_table):
len_list = [sum([delay_table[e] for e in dp])\
for dp in DataPathAnalysis.get_data_path(CGRA, individual)]
return sum([l - min(len_list) for l in len_list])
@staticmethod
def calc_max_lat_diff(CGRA, individual, delay_table):
lat_diff = LatencyBalanceEval.analyze_latency_diff(CGRA, individual, delay_table)
return max(lat_diff.values())
@staticmethod
def calc_sum_lat_diff(CGRA, individual, delay_table):
lat_diff = LatencyBalanceEval.analyze_latency_diff(CGRA, individual, delay_table)
return sum(lat_diff)
@staticmethod
def analyze_latency_diff(CGRA, individual, delay_table):
graph = individual.routed_graph.copy()
op_nodes = [CGRA.getNodeName("ALU", pos=pos) \
for pos in individual.mapping.values()]
graph.add_node("root")
nx.set_node_attributes(graph, 0.0, "min_len")
nx.set_node_attributes(graph, 0.0, "max_len")
used_iport = set(individual.routed_graph.nodes()) & \
set(CGRA.getInputPorts())
for i_port in used_iport:
graph.add_edge("root", i_port)
# analyze shortest path length
for u, v in nx.bfs_edges(graph, "root"):
if CGRA.isALU(v) or CGRA.isSE(v):
graph.node[v]["min_len"] = graph.node[u]["min_len"] + delay_table[u]
# for analyze longest path length
for u in nx.topological_sort(graph):
for v in graph.successors(u):
if CGRA.isALU(v) or CGRA.isSE(v):
if graph.node[v]["max_len"] < graph.node[u]["max_len"] + delay_table[u]:
graph.node[v]["max_len"] = graph.node[u]["max_len"] + delay_table[u]
latency_diff = {v: graph.node[v]["max_len"] - graph.node[v]["min_len"] \
for v in op_nodes}
individual.saveEvaluatedData("latency_diff", latency_diff)
del graph
return latency_diff
@staticmethod
def isMinimize():
return True
@staticmethod
def name():
return "Latency_Balance"