-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAStarRouter.py
executable file
·698 lines (582 loc) · 27.6 KB
/
AStarRouter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
# This file is part of GenMap and released under the MIT License, see LICENSE.
# Author: Takuya Kojima
from RouterBase import RouterBase
from SolverSetup import SolverSetup
import networkx as nx
import pulp
import itertools
import random
import sys
USED_LINK_WEIGHT = 10000
ALU_OUT_WEIGTH = 1000
PENALTY_CONST = 1000
# setting up for pulp solver
try:
solver = SolverSetup("ILP").getSolver()
except SolverSetup.SolverSetupError as e:
print("Fail to setup ILP solver:", e)
sys.exit()
class AStarRouter(RouterBase):
class InfeasibleRouting(Exception):
pass
@staticmethod
def get_penalty_cost():
return PENALTY_CONST
@staticmethod
def set_default_weights(CGRA):
# CGRA.setInitEdgeAttr("weight", 1, "SE")
# CGRA.setInitEdgeAttr("weight", 0, "Const")
# CGRA.setInitEdgeAttr("weight", 0, "IN_PORT")
# CGRA.setInitEdgeAttr("weight", 0, "OUT_PORT")
CGRA.setInitEdgeAttr("weight", ALU_OUT_WEIGTH, "ALU")
@staticmethod
def __init_ALU(CGRA, mapping, routed_graph):
"""Initialize ALU nodes in the PE array graph.
Args:
CGRA (PEArrayModel): A model of the CGRA
mapping (dict): mapping of the DFG
keys (str): operation label of DFG
values (tuple): PE coordinates
routed_graph (networkx DiGraph): A graph where the paths are routed
Details:
For operation mapped ALUs or unused ALU, which can work as routing node,
True of "routable" attribute is added.
This is a flag for routing.
"in_capacity" attribute is added as int.
This is a count of in_edges.
For the other ALUs,
False of "routable" attribute is added not to be used as routing node.
"""
w, h = CGRA.getSize()
used_coords = mapping.values()
for x in range(w):
for y in range(h):
alu = CGRA.getNodeName("ALU", pos = (x, y))
if (x, y) in used_coords:
# op mapped ALUs
routed_graph.nodes[alu]["routable"] = True
routed_graph.nodes[alu]["in_capacity"] = \
CGRA.getALUMuxCount((x, y))
else:
if CGRA.isRoutingALU((x, y)):
# remove high cost of ALU out
for suc_element in routed_graph.successors(alu):
routed_graph.edges[alu, suc_element]["weight"] = \
CGRA.getLinkWeight((alu, suc_element))
# Routing ALU candidates
routed_graph.nodes[alu]["routable"] = True
routed_graph.nodes[alu]["in_capacity"] = 1
else:
# not used for both op and routing
routed_graph.nodes[alu]["routable"] = False
@staticmethod
def __remove_other_edges(graph, target, srcs):
"""remove edges other than the specified edges
Args:
graph (networkx DiGraph): A graph where the paths are routed
target (str): target node (successor)
src (str): predecessor node of the edge to be remained
"""
remove_edges = [(p, target) for p in \
graph.predecessors(target) \
if p not in srcs]
graph.remove_edges_from(remove_edges)
@staticmethod
def __rm_ALU_out_cost(CGRA, graph, alu):
"""remove high cost of ALU outputs which are available for the routing
Args:
CGRA (PEArrayModel): A model of the CGRA
graph (networkx DiGraph): A graph where the paths are routed
alu (str): a node name of the target ALU
"""
for suc_element in graph.successors(alu):
if CGRA.isALU(suc_element) and \
not graph.nodes[suc_element]["routable"]:
continue
e = (alu, suc_element)
if graph.edges[e]["free"]:
graph.edges[e]["weight"] = \
CGRA.getLinkWeight(e)
@staticmethod
def __disable_free_inedge(graph, target):
"""disable all free incoming edge
Args:
graph (networkx DiGraph): A graph where the paths are routed
target (str): target node (successor)
"""
for e in graph.in_edges(target):
if graph.edges[e]["free"]:
graph.edges[e]["weight"] = USED_LINK_WEIGHT
@staticmethod
def __mark_used_node(graph, v):
"""mark the node as used
Args:
graph (networkx DiGraph): A graph where the paths are routed
v (str): the used node
"""
for e in graph.out_edges(v):
graph.edges[e]["weight"] = USED_LINK_WEIGHT
@staticmethod
def __mark_used_edge(graph, e):
"""mark the edge as used
Args:
graph (networkx DiGraph): A graph where the paths are routed
e (tuple of str): the used edge
"""
graph.edges[e]["weight"] = USED_LINK_WEIGHT
graph.edges[e]["free"] = False
@staticmethod
def comp_routing(CGRA, comp_DFG, mapping, routed_graph, **info):
AStarRouter.__init_ALU(CGRA, mapping, routed_graph)
# get out degree for each node
out_deg = {v: comp_DFG.out_degree(v) for v in comp_DFG.nodes() if comp_DFG.out_degree(v) > 0 }
# sort in ascending order
out_deg = {k: v for k, v in sorted(out_deg.items(), key=lambda x: x[1])}
# Astar Routing
route_cost = 0
for src_node in out_deg.keys():
# get node element on the PE array
src_alu = CGRA.getNodeName("ALU", pos = mapping[src_node])
# remove high cost of alu out
AStarRouter.__rm_ALU_out_cost(CGRA, routed_graph, src_alu)
# get destination alus in ascending order of manhattan distance from the src node
# key : dst alu node name
# value: operand attributes of edge between the dest and the src
dest_alus = {CGRA.getNodeName("ALU", pos = mapping[dst_node]): \
comp_DFG.edges[src_node, dst_node]["operand"] \
for dst_node in \
sorted(list(comp_DFG.successors(src_node)), \
key=lambda x: AStarRouter.__manhattan_dist(mapping[x], mapping[src_node])) }
# route each path
route_cost += AStarRouter.__single_src_multi_dest_route(CGRA, routed_graph, src_alu, dest_alus)
return route_cost
@staticmethod
def const_routing(CGRA, const_DFG, mapping, routed_graph, **info):
if len(const_DFG.nodes()) == 0:
return 0
const_map = AStarRouter.__resource_mapping(CGRA, CGRA.getConstRegs(), const_DFG, mapping, routed_graph)
if const_map is None:
return PENALTY_CONST * len(list(const_DFG.edges()))
else:
# save const mapping
nx.set_node_attributes(routed_graph, {c_reg: edges[0][0] \
for c_reg, edges in const_map.items() if len(edges) > 0},\
"value")
route_cost = 0
for c_reg, edges in const_map.items():
dst_alus = {CGRA.getNodeName("ALU", pos=mapping[dst_node]):\
const_DFG.edges[(c, dst_node)]["operand"] \
for c, dst_node in edges}
route_cost += AStarRouter.__single_src_multi_dest_route(CGRA, routed_graph, c_reg, dst_alus)
return route_cost
@staticmethod
def input_routing(CGRA, in_DFG, mapping, routed_graph, **info):
input_map = AStarRouter.__resource_mapping(CGRA, CGRA.getInputPorts(), in_DFG, mapping, routed_graph)
if input_map is None:
return PENALTY_CONST * len(list(in_DFG.edges()))
else:
# save input mapping
nx.set_node_attributes(routed_graph, {i_port: edges[0][0] \
for i_port, edges in input_map.items() if len(edges) > 0},\
"map")
route_cost = 0
for i_port, edges in input_map.items():
dst_alus = {CGRA.getNodeName("ALU", pos=mapping[dst_node]):\
in_DFG.edges[(i, dst_node)]["operand"] \
for i, dst_node in edges}
route_cost += AStarRouter.__single_src_multi_dest_route(CGRA, routed_graph, i_port, dst_alus)
return route_cost
@staticmethod
def output_routing(CGRA, out_DFG, mapping, routed_graph, preg_conf = None, dontuse = [], **info):
route_cost = 0
# get output edges
output_edges = out_DFG.edges()
# get output node name
out_port_nodes = [oport for oport in CGRA.getOutputPorts()\
if not oport in dontuse]
# # get alu nodes connected to output port
alu_list = []
for v, o in output_edges:
alu_list.append(CGRA.getNodeName("ALU", pos=mapping[v]))
remain_edges = len(output_edges)
# check pipeline structure
path_extend_nodes = []
free_last_stage_SEs = set()
if CGRA.getPregNumber() != 0:
stage_domains = CGRA.getStageDomains(preg_conf, remove_return_se = True)
if len(stage_domains) > 1:
last_stage_nodes = stage_domains[-1]
path_extend_nodes = [alu for alu in alu_list if not alu in last_stage_nodes]
free_last_stage_SEs = set(last_stage_nodes) & set(CGRA.getFreeSEs(routed_graph))
# greedy output routing
for v, o in output_edges:
# get alu name
alu = CGRA.getNodeName("ALU", pos=mapping[v])
# remove high cost of alu out
AStarRouter.__rm_ALU_out_cost(CGRA, routed_graph, alu)
src = alu
if src in path_extend_nodes:
# extend data path
path, cost = AStarRouter.__find_nearest_node(routed_graph, src, free_last_stage_SEs)
if path is None:
return PENALTY_CONST * remain_edges
route_cost += cost
# update cost and used flag
for i in range(len(path) - 1):
AStarRouter.__mark_used_edge(routed_graph,\
(path[i], path[i+1]))
routed_graph.nodes[path[i]]["free"] = False
# remove other input edges
AStarRouter.__remove_other_edges(routed_graph, path[i+1],\
path[i])
if CGRA.isALU(path[i+1]):
routed_graph.nodes[path[i+1]]["route"] = True
routed_graph.nodes[path[i+1]]["in_capacity"] = 0
routed_graph.nodes[path[-1]]["free"] = False
free_last_stage_SEs -= set(path)
AStarRouter.__mark_used_node(routed_graph, src)
# change source node, alu -> se
src = path[-1]
# output routing
path, cost = AStarRouter.__find_nearest_node(routed_graph, src, out_port_nodes)
if path is None:
return PENALTY_CONST * remain_edges
route_cost += cost
# update cost and used flags
for i in range(len(path) - 1):
AStarRouter.__mark_used_edge(routed_graph,\
(path[i], path[i+1]))
routed_graph.nodes[path[i]]["free"] = False
# remove other input edges
AStarRouter.__remove_other_edges(routed_graph, path[i+1],\
path[i])
if CGRA.isALU(path[i+1]):
routed_graph.nodes[path[i+1]]["route"] = True
routed_graph.nodes[path[i+1]]["in_capacity"] = 0
routed_graph.nodes[path[-1]]["free"] = False
free_last_stage_SEs -= set(path)
# update ALU out link cost and used flag
AStarRouter.__mark_used_node(routed_graph, src)
out_port_nodes.remove(path[-1])
routed_graph.nodes[path[-1]]["map"] = o
remain_edges -= 1
return route_cost
@staticmethod
def inout_routing(CGRA, in_DFG, out_DFG, mapping, routed_graph, **info):
io_port = CGRA.getInoutPorts()
io_map = AStarRouter.__io_mapping(CGRA, io_port, in_DFG, out_DFG, mapping, routed_graph)
if io_map is None:
return PENALTY_CONST * (len(list(in_DFG.edges())) + len(list(out_DFG.edges())))
else:
input_map, output_map = io_map
# save io mapping
nx.set_node_attributes(routed_graph, input_map, "map")
nx.set_node_attributes(routed_graph, output_map, "map")
# input routing
route_cost = 0
edges = {inode: [] for inode in input_map.values()}
for (u, v) in in_DFG.edges():
edges[u].append((u, v))
for i_port, inode in input_map.items():
dst_alus = {CGRA.getNodeName("ALU", pos=mapping[dst_node]):\
in_DFG.edges[(i, dst_node)]["operand"] \
for i, dst_node in edges[inode]}
route_cost += AStarRouter.__single_src_multi_dest_route(CGRA, routed_graph, i_port, dst_alus)
# output routing
for o_port, onode in output_map.items():
# get source alu
src_node = list(out_DFG.predecessors(onode))[0]
alu = CGRA.getNodeName("ALU", pos=mapping[src_node])
# update link cost around the alu
AStarRouter.__rm_ALU_out_cost(CGRA, routed_graph, alu)
# get shortest path
try:
path = nx.astar_path(routed_graph, alu, o_port)
cost = sum([routed_graph.edges[(path[i], path[i+1])]["weight"]\
for i in range(len(path) - 1)])
if cost > ALU_OUT_WEIGTH:
route_cost += PENALTY_CONST
else:
# update cost and used flags
for i in range(len(path) - 1):
AStarRouter.__mark_used_edge(routed_graph,\
(path[i], path[i+1]))
routed_graph.nodes[path[i]]["free"] = False
# remove other input edges
AStarRouter.__remove_other_edges(routed_graph,\
path[i+1], path[i])
if CGRA.isALU(path[i+1]):
routed_graph.nodes[path[i+1]]["route"] = True
routed_graph.nodes[path[i+1]]["in_capacity"] = 0
routed_graph.nodes[path[-1]]["free"] = False
# update ALU out link cost and used flag
AStarRouter.__mark_used_node(routed_graph, alu)
route_cost += cost
except nx.exception.NetworkXNoPath:
route_cost += PENALTY_CONST
return route_cost
@staticmethod
def __resource_mapping(CGRA, resources, DFG, mapping, routed_graph):
"""Decides resource mapping for const regs or input ports.
Args:
CGRA (PEArrayModel): A model of the CGRA
resources (list-like): mapped node names in the PE array graph
DFG (networkx DiGraph): A graph to be routed
mapping (dict): mapping of the DFG
keys (str): operation node names of DFG
values (tuple): PE coordinates
routed_graph (networkx DiGraph): PE array graph
Returns:
dict: const mapping
keys (str): resource name of routed_graph
values (list): list of edges which are routed from the resources
In case of failure, return None
"""
# get const edges
routed_edges = DFG.edges()
# check validation
if len(set([r for r, v in routed_edges])) > len(resources):
# Exceed available const reg number
return None
# calculate distance
dist_from_res = {}
for r, v in routed_edges:
dist_from_res[(r, v)] = {}
for res_node in resources:
alu = CGRA.getNodeName("ALU", pos=mapping[v])
try:
dist = nx.astar_path_length(routed_graph, res_node, alu)
except nx.exception.NetworkXNoPath:
dist = PENALTY_CONST
dist_from_res[(r, v)][res_node] = dist + 1
# make pulp problem
prob = pulp.LpProblem("Make_Resouece_Mapping", pulp.LpMinimize)
# make pulp variables
# first index: edge, second index const reg node
isMap = pulp.LpVariable.dicts("MAP", (routed_edges, resources), 0, 1, cat="Binary")
# define problem
prob += pulp.lpSum([isMap[e][r] * dist_from_res[e][r] for e in routed_edges for r in resources])
# constraints
# to ensure each edge is mapped to a const reg
for e in routed_edges:
prob += pulp.lpSum([isMap[e][r] for r in resources]) == 1
# to prevent multiple values from being mapped to the same const reg
for e1, e2 in itertools.combinations(routed_edges, 2):
for r in resources:
if e1[0] == e2[0]: # if same value
prob += isMap[e1][r] + isMap[e2][r] <= 2
else:
prob += isMap[e1][r] + isMap[e2][r] <= 1
# solve this ILP
stat = prob.solve(solver)
result = prob.objective.value()
# check result
if pulp.LpStatus[stat] == "Optimal" and not result is None:
res_mapping = {r: [e for e in routed_edges if round(isMap[e][r].value()) == 1] for r in resources}
return res_mapping
else:
return None
@staticmethod
def __io_mapping(CGRA, ioports, in_DFG, out_DFG, mapping, routed_graph):
"""Decides io-mapping under the constraint about sharing input port and output port
Args:
CGRA (PEArrayModel): A model of the CGRA
ioport (list-like): list of ioport nodes name (tuple)
in_DFG (networkx DiGraph): An input graph to be routed
out_DFG (networkx DiGraph): An output graph to be routed
mapping (dict): mapping of the DFG
keys (str): operation node names of DFG
values (tuple): PE coordinates
routed_graph (networkx DiGraph): PE array graph
Returns:
tuple of dict: (input_mapping, output_mapping)
For both dict:
keys (str): input/output port name of routed_graph
values (list): input/output node name of app graph
In case of failure, return None
"""
iport_list = [x[0] for x in ioports]
oport_list = [x[1] for x in ioports]
# get in/out edges
routed_in_edges = in_DFG.edges()
routed_out_edges = out_DFG.edges()
# get input/output values
inodes = set([i for i, v in routed_in_edges])
onodes = set([o for v, o in routed_out_edges])
# check validation
if (len(inodes) + len(onodes)) > len(ioports):
# Exceed available io port
return None
# calculate distance
dist_from_res = {}
for i, v in routed_in_edges:
dist_from_res[(i, v)] = {}
for ip in iport_list:
alu = CGRA.getNodeName("ALU", pos=mapping[v])
try:
dist = nx.astar_path_length(routed_graph, ip, alu)
except nx.exception.NetworkXNoPath:
dist = PENALTY_CONST
dist_from_res[(i, v)][ip] = dist + 1
for v, o in routed_out_edges:
dist_from_res[(v, o)] = {}
for op in oport_list:
alu = CGRA.getNodeName("ALU", pos=mapping[v])
try:
path = nx.astar_path(routed_graph, alu, op)
dist = sum([routed_graph.edges[(path[i], path[i+1])]["weight"]\
for i in range(len(path) - 1)])
if routed_graph.edges[(path[0], path[1])]["weight"] == ALU_OUT_WEIGTH:
if routed_graph.edges[(path[0], path[1])]["free"]:
dist -= ALU_OUT_WEIGTH + 1
except nx.exception.NetworkXNoPath:
dist = PENALTY_CONST
dist_from_res[(v, o)][op] = dist
# make pulp problem
prob = pulp.LpProblem("Make_IO_Mapping", pulp.LpMinimize)
# make pulp variables
# first index: input/output node, second input/output port
isInportMap = pulp.LpVariable.dicts("IPMAP", (inodes, iport_list), 0, 1, cat="Binary")
isOutportMap = pulp.LpVariable.dicts("OPMAP", (onodes, oport_list), 0, 1, cat="Binary")
# define problem
prob += pulp.lpSum([isInportMap[e[0]][ip] * dist_from_res[e][ip] for e in routed_in_edges for ip in iport_list]) + \
pulp.lpSum([isOutportMap[e[1]][op] * dist_from_res[e][op] for e in routed_out_edges for op in oport_list])
# constraints
# to ensure each edge is mapped to a port
for inode in inodes:
prob += pulp.lpSum([isInportMap[inode][ip] for ip in iport_list]) == 1
for onode in onodes:
prob += pulp.lpSum([isOutportMap[onode][op] for op in oport_list]) == 1
# to prevent overuse of inout port
for i in range(len(ioports)):
prob += pulp.lpSum([isInportMap[inode][iport_list[i]] for inode in inodes]) + \
pulp.lpSum([isOutportMap[onode][oport_list[i]] for onode in onodes]) <= 1
# solve this ILP
stat = prob.solve(solver)
result = prob.objective.value()
# check result
if pulp.LpStatus[stat] == "Optimal" and not result is None:
input_mapping = {}
for inode in inodes:
for ip in iport_list:
if isInportMap[inode][ip].value() == 1.0:
input_mapping[ip] = inode
break
output_mapping = {}
for onode in onodes:
for op in oport_list:
if isOutportMap[onode][op].value() == 1.0:
output_mapping[op] = onode
break
return (input_mapping, output_mapping)
else:
return None
@staticmethod
def __manhattan_dist(p1, p2):
"""Return manhattan distance between p1 and p2"""
return (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
@staticmethod
def __find_nearest_node(graph, src, dsts):
"""Find the nearset node for src from dsts.
Args:
src (str): source node
dsts (list-like): destination nodes
Returns:
(list, int): path, cost
"""
min_length = PENALTY_CONST
nearest_node = None
path_dict = {}
# find a nearest node greedy
for dst in dsts:
try:
path = nx.astar_path(graph, src, dst, weight="weight")
path_len = sum([graph.edges[(path[i], path[i+1])]["weight"]\
for i in range(len(path) - 1)])
path_dict[dst] = path
if path_len < min_length:
min_length = path_len
nearest_node = dst
except nx.exception.NetworkXNoPath:
continue
if nearest_node is None:
return None, PENALTY_CONST
else:
return path_dict[nearest_node], min_length
@staticmethod
def __single_src_multi_dest_route(CGRA, graph, src, dsts):
"""Routes a single source to multiple destinations.
Args:
CGRA (PEArrayModel): A model of the CGRA
graph (networkx DiGraph): A graph where the paths are routed
src (str): source node name of the routed edges
dests (dict): destination nodes of the routed edges
key: dest node names
value: operand attribute of the edge
If the edge don't has this attributes, it is None
Returns:
int: routing cost
"""
# route each path
shared_edges = set()
route_cost = 0
if len(dsts) == 0:
return 0
for dst, operand in dsts.items():
try:
# get path length by using astar
path = nx.astar_path(graph, src, dst, weight = "weight")
path_len = sum([graph.edges[(path[i], path[i+1])]["weight"]\
for i in range(len(path) - 1)])
if path_len > ALU_OUT_WEIGTH:
raise nx.exception.NetworkXNoPath
else:
route_cost += path_len
# set used flag to the links
for i in range(len(path) - 1):
e = (path[i], path[i + 1])
isSE = CGRA.isSE(e[1])
isALU = CGRA.isALU(e[1])
if isSE or (isALU and e[1] != path[-1]):
# if the link is provided by SE, set cost 0
# for path sharing
shared_edges.add(e)
graph.edges[e]["weight"] = 0
# remove other input edges
AStarRouter.__remove_other_edges(graph, path[i+1],\
path[i])
if isALU:
graph.nodes[e[1]]["route"] = True
graph.nodes[e[1]]["in_capacity"] = 0
else:
# other than SE's
AStarRouter.__mark_used_edge(graph, e)
# add operand attr
if not operand is None:
graph.edges[(path[-2], path[-1])]["operand"] = operand
# check input capacity
graph.nodes[dst]["in_capacity"] -= 1
if graph.nodes[dst]["in_capacity"] == 0:
AStarRouter.__disable_free_inedge(graph, dst)
except nx.exception.NetworkXNoPath:
# there is no path
# print("Fail:", src, "->", dst)
route_cost += PENALTY_CONST
# update SE edges link cost and used flag
for e in shared_edges:
AStarRouter.__mark_used_edge(graph, e)
graph.nodes[e[1]]["free"] = False
# update ALU out link cost and used flag
AStarRouter.__mark_used_node(graph, src)
graph.nodes[src]["free"] = False
for v in dsts:
graph.nodes[v]["free"] = False
return route_cost
@staticmethod
def clean_graph(graph):
"""Cleaning graph"""
remove_edges = [e for e in graph.edges() if graph.edges[e]["free"] == True]
graph.remove_edges_from(remove_edges)
remove_nodes = [v for v in graph.nodes() if graph.nodes[v]["free"] == True]
# remove_nodes = [v for v in graph.nodes() if graph.in_degree(v) == 0 and graph.out_degree(v) == 0]
graph.remove_nodes_from(remove_nodes)