-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
353 lines (292 loc) · 12.8 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
from PIL import Image
import json
import random
import numpy as np
import os
import torch
from torch.utils.data import Dataset
from torchvision import transforms
class DeepFeatDatabase(Dataset):
def __init__(self, data_root, mos_file, phase='train'):
with open(mos_file, 'r') as f:
mos_data = json.load(f)
mos_data = mos_data[phase]
self.video_name = mos_data['dis']
self.video_mos = mos_data['mos']
self.feat = [np.load(data_root / f'{vn[:-4]}.npy') for vn in self.video_name]
self.video_mos = [(float(s)-1.0)/4.0 for s in self.video_mos]
# self.video_mos = [float(s) for s in self.video_mos]
def __len__(self) -> int:
return len(self.video_name)
def __getitem__(self, item):
data = self.feat[item]
mos = self.video_mos[item]
return data, mos
class DeepFeatDataset(Dataset):
def __init__(self, arg, phase: str = None, shuffle: str = False):
super(DeepFeatDataset, self).__init__()
assert phase == 'train' or phase == 'val' or phase == 'test'
# 数据存放根目录
self.data_root = arg.data_root
# 每个视频的最大帧数
self.max_len = arg.max_len
# 每帧的特征维度
self.feat_dim = arg.d_feat
'''
根据 phase 得到训练/测试/验证数据
'''
with open(arg.data_info_dir) as f:
info: dict = json.load(f)
# 获取所有数据名
self.data_name_list = info['video_name_list']
# 获得所有数据标签
self.label_list = info['video_label_list']
# 获取MOS最大值,用于归一化训练数据
self.scale = max(self.label_list)
# 根据 state 获得所需数据的索引
if phase == 'train':
idx_list = info['train_idx']
elif phase == 'val':
idx_list = info['val_idx']
elif phase == 'test':
idx_list = info['test_idx']
self.idx_list = idx_list
# # 通过索引获得训练/验证/测试数据绝对路径
# self.data_path = [os.path.join(dataset_info['data_root'], data_name_list[idx]) for idx in idx_list]
# # 获得相应数据的MOS
# self.labels = [info['video_label_list'][idx] for idx in idx_list]
# 特征是否shuffle
self.shuffle = shuffle
self.feat_len = [512, 1024, 2048, 4096]
self.video = []
self.len = []
self.label = []
# self.scale = []
def __getitem__(self, idx):
# 获得所需数据的索引
data_idx = self.idx_list[idx]
# 获得所需数据名
data_name = self.data_name_list[data_idx]
# 加载数据
npy_name = os.path.join(self.data_root, data_name) + '.npy'
if os.path.isfile(npy_name) is False:
print(npy_name)
return self.video, self.len, self.label, self.scale
# self.scale
feature_data = np.load(npy_name)
# feature_data = feature_data[:, 4096:8192]
feature_data = np.split(feature_data, [512, 1536, 3584, 7680], 1)
# feature_data = d[3]
# mu = feature_data[:, 0:2048]
# std = feature_data[:, 2048:2096]
# feature_data = np.concatenate((feature_data[:, 0:2048], feature_data[:, 4096:6144]), 1)
# 打乱数据
if self.shuffle:
np.random.RandomState(123).shuffle(feature_data)
# 每个视频的帧数
length = feature_data[0].shape[0]
video = []
for index, feat_len in enumerate(self.feat_len):
data = np.zeros([self.max_len, feat_len], dtype=np.float32)
data[:length] = feature_data[index]
video.append(data)
# 获得标签
label = self.label_list[data_idx]
# self.video = video
# self.len = length
# self.label = label / self.scale
# self.scale = []
# data = np.zeros([self.max_len, self.feat_dim], dtype=np.float32)
# data[:length] = np.squeeze(feature_data)
# # 获得标签
# label = self.label_list[data_idx]
# return data, length, label / self.scale, self.scale
return video, length, label / self.scale, self.scale
# return torch.cat([last_feature.unsqueeze(1), diff_feature], dim=1)
def __len__(self):
# print(len(self.idx_list))
return len(self.idx_list)-1
class DeepMSFeatDataset(Dataset):
def __init__(self, arg, phase: str = None, shuffle: str = True):
super(DeepMSFeatDataset, self).__init__()
assert phase == 'train' or phase == 'val' or phase == 'test'
# 数据存放根目录
self.data_root = arg.data_root
# 每个视频的最大帧数
self.max_len = arg.max_len
# 每帧的特征维度
self.feat_dim = arg.input_size
'''
根据 phase 得到训练/测试/验证数据
'''
with open(arg.data_info_dir) as f:
info: dict = json.load(f)
# 获取所有数据名
self.data_name_list = info['video_name_list']
# 获得所有数据标签
self.label_list = info['video_label_list']
# 获取MOS最大值,用于归一化训练数据
self.scale = max(self.label_list)
# 根据 state 获得所需数据的索引
if phase == 'train':
idx_list = info['train_idx']
elif phase == 'val':
idx_list = info['val_idx']
elif phase == 'test':
idx_list = info['test_idx']
self.idx_list = idx_list
# # 通过索引获得训练/验证/测试数据绝对路径
# self.data_path = [os.path.join(dataset_info['data_root'], data_name_list[idx]) for idx in idx_list]
# # 获得相应数据的MOS
# self.labels = [info['video_label_list'][idx] for idx in idx_list]
# 特征是否shuffle
self.shuffle = shuffle
def __getitem__(self, idx):
# 获得所需数据的索引
data_idx = self.idx_list[idx]
# 获得所需数据名
data_name = self.data_name_list[data_idx]
# 加载数据
# feature_data = np.load(os.path.join(self.data_root, data_name) + '.npy')
feature_datas = np.load(os.path.join(self.data_root, data_name) + '.npz')
ti = feature_datas['ti']
diff_mu_std = feature_datas['diff_mu_std']
d = np.split(diff_mu_std, [512, 1536, 3584, 7680], 1)
mu_std = feature_datas['mu_std']
s = np.split(mu_std, [512, 1536, 3584, 7680], 1)
feature_data = np.concatenate((s[3], d[3]), 1) ##4096*2
# feature_data = s[3] ##4096*2
# 打乱数据
if self.shuffle:
np.random.RandomState(123).shuffle(feature_data)
# 每个视频的帧数
length = feature_data.shape[0]
data = np.zeros([self.max_len, self.feat_dim], dtype=np.float32)
data[:length] = np.squeeze(feature_data)
# 获得标签
label = self.label_list[data_idx]
return data, length, label / self.scale, self.scale
def __len__(self):
# print(len(self.idx_list))
return len(self.idx_list)
class FrameDatabase(Dataset):
def __init__(self, data_root, mos_file, phase='train', video_len=50, size=(448, 448), rgb='RGB', multi_crop=False):
"""
video_len: all available frame number for each video
size(h, w): crop video to f frames with h x w
"""
with open(mos_file, 'r') as f:
mos_data = json.load(f)
mos_data = mos_data[phase]
self.phase = phase
self.video_len = video_len
self.th, self.tw = size
self.rgb = rgb
self.multi_crop = multi_crop
self.video_name = mos_data['dis']
self.video_mos = mos_data['mos']
self.video_mos = [(float(s)-1.0)/4.0 for s in self.video_mos]
self.frame_path = [[data_root / vn[:-4] / f'{fi:03d}.png' for fi in range(1, video_len + 1)] for vn in self.video_name]
self.transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
self.spatial_crop = RandomImageCrop((self.th, self.tw))
self.spatial_multi_crop = FiveVideoCrop((self.th, self.tw))
def __len__(self) -> int:
return len(self.video_name)
def __getitem__(self, item):
frame_path = self.frame_path[item]
mos = self.video_mos[item]
if not self.multi_crop:
fi = torch.randint(0, self.video_len, size=(1, )).item()
frame = Image.open(frame_path[fi]).convert(self.rgb)
frame = self.transform(frame)
crop = self.spatial_crop(frame)
else:
video = torch.Tensor()
for fi in range(self.video_len):
frame = Image.open(frame_path[fi]).convert(self.rgb)
frame = self.transform(frame)
video = torch.cat((video, frame.unsqueeze(0)), 0)
crop = self.spatial_multi_crop(video)
return crop, mos
class FrFrameDatabase(Dataset):
def __init__(self, data_root, mos_file, phase='train', video_len=50, size=(448, 448), rgb='RGB'):
"""
video_len: all available frame number for each video
size(h, w): crop video to f frames with h x w
"""
with open(mos_file, 'r') as f:
mos_data = json.load(f)
mos_data = mos_data[phase]
self.phase = phase
self.video_len = video_len
self.th, self.tw = size
self.rgb = rgb
self.video_name = mos_data['dis']
self.video_mos = mos_data['mos']
self.video_mos = [float(s)/5.0 for s in self.video_mos]
self.dis_frames = [[data_root / vn[:-4] / f'{fi:03d}.png' for fi in range(1, video_len + 1)] for vn in self.video_name]
self.ref_frames = [[data_root / f'{vn[:-6]}00' / f'{fi:03d}.png' for fi in range(1, video_len + 1)] for vn in self.video_name]
self.transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
self.spatial_crop = RandomImageCrop((self.th, self.tw))
self.multi_crop = FiveVideoCrop((self.th, self.tw))
def __len__(self) -> int:
return len(self.video_name)
def __getitem__(self, item):
ref_frames = self.ref_frames[item]
dis_frames = self.dis_frames[item]
mos = self.video_mos[item]
fi = torch.randint(0, self.video_len, size=(1, )).item()
ref = Image.open(ref_frames[fi]).convert(self.rgb)
dis = Image.open(dis_frames[fi]).convert(self.rgb)
ref, dis = self.transform(ref), self.transform(dis)
ref, dis = self.spatial_crop(ref, dis)
return (ref, dis), mos
class RandomImageCrop(torch.nn.Module):
"""Crop the given frame at a random location.
"""
def __init__(self, size):
super().__init__()
self.th, self.tw = size
def forward(self, dis, ref=None):
c, h, w = dis.shape
i = torch.randint(0, h - self.th + 1, size=(1, )).item()
j = torch.randint(0, w - self.tw + 1, size=(1, )).item()
if ref is not None:
return dis[:, i:i+self.th, j:j+self.tw], ref[:, i:i+self.th, j:j+self.tw]
return dis[:, i:i+self.th, j:j+self.tw]
class CenterImageCrop(torch.nn.Module):
"""Crop the given frame at a center location.
"""
def __init__(self, size):
super().__init__()
self.th, self.tw = size
def forward(self, dis, ref=None):
c, h, w = dis.shape
i = (h - self.th) // 2
j = (w - self.tw) // 2
if ref is not None:
return dis[:, i:i+self.th, j:j+self.tw], ref[:, i:i+self.th, j:j+self.tw]
return dis[:, i:i+self.th, j:j+self.tw]
class FiveVideoCrop(torch.nn.Module):
"""Crop the given video to multi patches, four corners and center.
"""
def __init__(self, size):
super().__init__()
self.th, self.tw = size
def forward(self, video):
n, c, h, w = video.shape
hc = (h - self.th) // 2
wc = (w - self.tw) // 2
left_top = video[:, :, 0:self.th, 0:self.tw]
left_down = video[:, :, h-self.th:h, 0:self.tw]
right_top = video[:, :, 0:self.th, w-self.tw:w]
right_down = video[:, :, h-self.th:h, w-self.tw:w]
center = video[:, :, hc:hc+self.th, wc:wc+self.tw]
video_slice = torch.cat([left_top, left_down, right_top, right_down, center], dim=0)
return video_slice