-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnminus1FCModule.py
333 lines (268 loc) · 17.7 KB
/
nminus1FCModule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import openmdao.api as om
import numpy as np
class nminus1FuelCellStackComp(om.ExplicitComponent):
"""
Fuel cell stack model calculates following parameters for in each of the
n-1 fuel cell system modules operating at current and delivering power:
ratio of electrical power produced by the fuel cell stack in the module to the voltage
of the cell in the fuel cell stack, maximum electrical power produced by the
fuel cell system module, and the electrical efficiency of the fuel cell stack.
Inputs
------
current_minus1fcstack : float
Current of the nth fuel cell stack (vector, A).
pwr_el_nminus1fcmodule_bop : float
Electrical power consumed by the balance of plant (BOP) of the fuel cell system module (vector, W).
Outputs
-------
ratio_nminus1powerfcstackbycellvoltage : float
Ratio of electrical power produced by the fuel cell stack in the module
to the voltage of the cell in the fuel cell stack (vector, W/V).
pwr_el_del_per_nminus1fcsysmodule : float
Electrical power delivered per fuel cell system module (vector, W).
eff_el_nminus1fcstack : float
Electrical efficiency of the fuel cell stack in the nth fuel cell system module (vector, dimensionless).
Options
-------
num_nodes : int
Number of analysis points to run (scalar, dimensionless).
"""
def initialize(self):
self.options.declare('num_nodes', types=int)
def setup(self):
nn = self.options['num_nodes']
# Inputs
# Global Design Variable
self.add_input('current_nminus1fcstack', val=1.0*np.ones(nn))#, units='A'
# Coupling parameter
self.add_input('pwr_el_nminus1fcmodule_bop', val=1.0*np.ones(nn))#, units='J/s'
# Outputs
# Coupling output
self.add_output('ratio_nminus1powerfcstackbycellvoltage', val=1.0*np.ones(nn))#, units='W/V'
self.add_output('pwr_el_del_per_nminus1fcsysmodule', val=1.0*np.ones(nn))#, units='J/s'
# Non-Coupling outputs
self.add_output('eff_el_nminus1fcstack', val=1.0*np.ones(nn))#, units=None
# Partials
ar=np.arange(nn)
self.declare_partials(of='ratio_nminus1powerfcstackbycellvoltage', wrt='current_nminus1fcstack', rows=ar, cols=ar)
self.declare_partials(of='ratio_nminus1powerfcstackbycellvoltage', wrt='pwr_el_nminus1fcmodule_bop', rows=ar, cols=ar)
self.declare_partials(of='pwr_el_del_per_nminus1fcsysmodule', wrt='current_nminus1fcstack', rows=ar, cols=ar)
self.declare_partials(of='pwr_el_del_per_nminus1fcsysmodule', wrt='pwr_el_nminus1fcmodule_bop', rows=ar, cols=ar)
self.declare_partials(of='eff_el_nminus1fcstack', wrt='current_nminus1fcstack', rows=ar, cols=ar)
self.declare_partials(of='eff_el_nminus1fcstack', wrt='pwr_el_nminus1fcmodule_bop', rows=ar, cols=ar)
def compute(self, inputs, outputs):
current_nminus1fcstack = inputs['current_nminus1fcstack']
pwr_el_nminus1fcmodule_bop = inputs['pwr_el_nminus1fcmodule_bop']
num_cells_in_fcstack = 309
# stack_voltage_reversible = num_cells_in_fcstack * 1.23
stack_voltage_thermoneutral = num_cells_in_fcstack * 1.48
stack_voltage = (-2e-7 * current_nminus1fcstack**3) + (0.0003 * current_nminus1fcstack**2) - (0.2041 * current_nminus1fcstack) + 274.36
pwr_el_nminus1fcstack = stack_voltage * current_nminus1fcstack
outputs['ratio_nminus1powerfcstackbycellvoltage'] = pwr_el_nminus1fcstack / (stack_voltage / num_cells_in_fcstack) # stack_voltage/number_of_cells
# outputs['pwr_ht_nminus1fcstack'] = (stack_voltage_thermoneutral - stack_voltage) * current_nminus1fcstack
outputs['eff_el_nminus1fcstack'] = stack_voltage / stack_voltage_thermoneutral
outputs['pwr_el_del_per_nminus1fcsysmodule'] = pwr_el_nminus1fcstack - pwr_el_nminus1fcmodule_bop
def compute_partials(self, inputs, partials):
current_nminus1fcstack = inputs['current_nminus1fcstack']
num_cells_in_fcstack = 309
# stack_voltage_reversible = num_cells_in_fcstack * 1.23
stack_voltage_thermoneutral = num_cells_in_fcstack * 1.48
partials['ratio_nminus1powerfcstackbycellvoltage','current_nminus1fcstack'] = num_cells_in_fcstack * 1
partials['ratio_nminus1powerfcstackbycellvoltage','pwr_el_nminus1fcmodule_bop'] = 0
partials['pwr_el_del_per_nminus1fcsysmodule','current_nminus1fcstack'] = (4 * -2e-7 * current_nminus1fcstack**3) + (3 * 0.0003 * current_nminus1fcstack**2) - (2 * 0.2041 * current_nminus1fcstack) + 274.36
partials['pwr_el_del_per_nminus1fcsysmodule','pwr_el_nminus1fcmodule_bop'] = -1
partials['eff_el_nminus1fcstack','current_nminus1fcstack'] = ((3 * -2e-7 * current_nminus1fcstack**2) + (2 * 0.0003 * current_nminus1fcstack**1) - (1 * 0.2041 * current_nminus1fcstack**0))/stack_voltage_thermoneutral
partials['eff_el_nminus1fcstack','pwr_el_nminus1fcmodule_bop'] = 0
class nminus1FuelCellBoPComp(om.ExplicitComponent):
"""
Fuel cell system balance of plant model, of the fuel cell stack in each of the
n-1 fuel cell system modules operating at current, calculates various
properties of the balance of plant components (BoP)
including power required by the air compressor, hydrogen usage rate,
airflow rate, and overall efficiency of the fuel cell system module.
Inputs
------
ratio_nminus1powerfcstackbycellvoltage : float
Ratio of electrical power produced by the fuel cell stack in the module
to the voltage of the cell in the fuel cell stack (vector, W/V).
pwr_el_del_per_nminus1fcsysmodule : float
Electrical power delivered per fuel cell system module (vector, W).
Outputs
-------
pwr_el_nminus1fcmodule_bop : float
Electrical power consumed by the balance of plant (BOP) of the fuel cell system module (vector, W).
pwr_aircmprsr_nminus1fcstack : float
Power required by the air compressor for the fuel cell stack (vector, W).
nminus1stack_hydrogenusage_rate : float
Hydrogen usage rate of the fuel cell stack (vector, kg/s).
nminus1stack_airusage_rate : float
Air usage rate of the fuel cell stack (vector, kg/s).
eff_nminus1fcsysmodule : float
Efficiency of the fuel cell system module (vector, dimensionless).
Options
-------
num_nodes : int
Number of analysis points to run (scalar, dimensionless).
"""
def initialize(self):
self.options.declare('num_nodes', types=int)
def setup(self):
nn = self.options['num_nodes']
# Inputs
# Coupling parameters
self.add_input('ratio_nminus1powerfcstackbycellvoltage', val=1.0*np.ones(nn))#, units='W/V'
self.add_input('pwr_el_del_per_nminus1fcsysmodule', val=1.0*np.ones(nn))#, units='J/s'
# Outputs
# Coupling output
self.add_output('pwr_el_nminus1fcmodule_bop', val=1.0*np.ones(nn))#, units='J/s'
# Non-Coupling output
self.add_output('eff_nminus1fcsysmodule', val=1.0*np.ones(nn))#, units=None
self.add_output('nminus1stack_airusage_rate', val=1.0*np.ones(nn))#, units='kg/s'
self.add_output('nminus1stack_hydrogenusage_rate', val=1.0*np.ones(nn))#, units='kg/s'
self.add_output('nminus1stack_waterprodn_rate', val=1.0*np.ones(nn))#, units='kg/s'
# Partials
ar=np.arange(nn)
self.declare_partials(of='pwr_el_nminus1fcmodule_bop', wrt='ratio_nminus1powerfcstackbycellvoltage', rows=ar, cols=ar)
self.declare_partials(of='pwr_el_nminus1fcmodule_bop', wrt='pwr_el_del_per_nminus1fcsysmodule', rows=ar, cols=ar)
self.declare_partials(of='eff_nminus1fcsysmodule', wrt='ratio_nminus1powerfcstackbycellvoltage', rows=ar, cols=ar)
self.declare_partials(of='eff_nminus1fcsysmodule', wrt='pwr_el_del_per_nminus1fcsysmodule', rows=ar, cols=ar)
self.declare_partials(of='nminus1stack_airusage_rate', wrt='ratio_nminus1powerfcstackbycellvoltage', rows=ar, cols=ar)
self.declare_partials(of='nminus1stack_airusage_rate', wrt='pwr_el_del_per_nminus1fcsysmodule', rows=ar, cols=ar)
self.declare_partials(of='nminus1stack_hydrogenusage_rate', wrt='ratio_nminus1powerfcstackbycellvoltage', rows=ar, cols=ar)
self.declare_partials(of='nminus1stack_hydrogenusage_rate', wrt='pwr_el_del_per_nminus1fcsysmodule', rows=ar, cols=ar)
self.declare_partials(of='nminus1stack_waterprodn_rate', wrt='ratio_nminus1powerfcstackbycellvoltage', rows=ar, cols=ar)
self.declare_partials(of='nminus1stack_waterprodn_rate', wrt='pwr_el_del_per_nminus1fcsysmodule', rows=ar, cols=ar)
def compute(self, inputs, outputs):
ratio_nminus1powerfcstackbycellvoltage = inputs['ratio_nminus1powerfcstackbycellvoltage']
pwr_el_del_per_nminus1fcsysmodule = inputs['pwr_el_del_per_nminus1fcsysmodule']
lambda_air_nminus1fcstack = 2.2
lambda_hydrogen_nminus1fcstack = 1.2
hhv_h2 = 1.417e8
outputs['nminus1stack_airusage_rate'] = nminus1stack_airusage_rate = 3.58e-7 * ratio_nminus1powerfcstackbycellvoltage * lambda_air_nminus1fcstack
outputs['nminus1stack_hydrogenusage_rate'] = nminus1stack_hydrogenusage_rate = 1.05e-8 * ratio_nminus1powerfcstackbycellvoltage * lambda_hydrogen_nminus1fcstack
outputs['nminus1stack_waterprodn_rate'] = 9.34e-8 * ratio_nminus1powerfcstackbycellvoltage
pwr_aircmprsr_nminus1fcstack = 1004 * (298/0.7) * (((3*101325)/101325)**(0.286) - 1) * nminus1stack_airusage_rate
outputs['pwr_el_nminus1fcmodule_bop'] = pwr_aircmprsr_nminus1fcstack
# Following efficiency calculation does not account for stoichiometric ratio of hydrogen at inlet.
# Therefore, it is divided to get the real efficiency of fc system module.
outputs['eff_nminus1fcsysmodule'] = pwr_el_del_per_nminus1fcsysmodule / ((nminus1stack_hydrogenusage_rate / lambda_hydrogen_nminus1fcstack) * hhv_h2)
def compute_partials(self,inputs, partials):
ratio_nminus1powerfcstackbycellvoltage = inputs['ratio_nminus1powerfcstackbycellvoltage']
pwr_el_del_per_nminus1fcsysmodule = inputs['pwr_el_del_per_nminus1fcsysmodule']
lambda_air_nminus1fcstack = 2.2
lambda_hydrogen_nminus1fcstack = 1.2
hhv_h2 = 1.417e8
partials['pwr_el_nminus1fcmodule_bop', 'ratio_nminus1powerfcstackbycellvoltage'] = 1004 * (298/0.7) * (((3*101325)/101325)**(0.286) - 1) * 3.58e-7 * 1 * lambda_air_nminus1fcstack
partials['pwr_el_nminus1fcmodule_bop', 'pwr_el_del_per_nminus1fcsysmodule'] = 0
partials['eff_nminus1fcsysmodule', 'ratio_nminus1powerfcstackbycellvoltage'] = -1 * pwr_el_del_per_nminus1fcsysmodule / (((1.05e-8 * ratio_nminus1powerfcstackbycellvoltage**2 * lambda_hydrogen_nminus1fcstack)/lambda_hydrogen_nminus1fcstack) * hhv_h2)
partials['eff_nminus1fcsysmodule', 'pwr_el_del_per_nminus1fcsysmodule'] = 1 / (((1.05e-8 * ratio_nminus1powerfcstackbycellvoltage * lambda_hydrogen_nminus1fcstack)/lambda_hydrogen_nminus1fcstack) * hhv_h2)
partials['nminus1stack_airusage_rate', 'ratio_nminus1powerfcstackbycellvoltage'] = 3.58e-7 * 1 * lambda_air_nminus1fcstack
partials['nminus1stack_airusage_rate', 'pwr_el_del_per_nminus1fcsysmodule'] = 0
partials['nminus1stack_hydrogenusage_rate', 'ratio_nminus1powerfcstackbycellvoltage'] = 1.05e-8 * 1 * lambda_hydrogen_nminus1fcstack
partials['nminus1stack_hydrogenusage_rate', 'pwr_el_del_per_nminus1fcsysmodule'] = 0
partials['nminus1stack_waterprodn_rate', 'ratio_nminus1powerfcstackbycellvoltage'] = 9.34e-8
partials['nminus1stack_waterprodn_rate', 'pwr_el_del_per_nminus1fcsysmodule'] = 0
class nminus1FCModuleGroup(om.Group):
"""
This group models the optimisation cycle of in each of the
n-1 fuel cell system modules operating at current,
and includes modeling of the fuel cell stack, and its balance of plant.
Subsystems
----------
nthcyclefcstackandbop : Group
A group containing subsystems for modeling the fuel cell stack and BoP.
Components
----------
d1 : nminus1FuelCellStackComp
Component modeling the fuel cell stack.
d2 : nminus1FuelCellBoPComp
Component modeling the balance of plant (BoP) for the fuel cell stack.
obj_cmp : ExecComp
Component calculating the objective function based on the efficiency of the fuel cell stack or system.
Nonlinear Solver (not necessary and can be avoided)
----------------
nlsolver : NonlinearBlockGS
Nonlinear solver used for solving the nonlinear system within the group.
Linear Solver
-------------
lsolver : DirectSolver
Linear solver used for solving the linear system within the group.
Options
-------
num_nodes : int
Number of analysis points to run (scalar, dimensionless).
"""
def initialize(self):
self.options.declare('num_nodes', types=int)
def setup(self):
nn = self.options['num_nodes']
nminus1cyclefcstackandbop = self.add_subsystem('nminus1cyclefcstackandbop', om.Group(), promotes=['*'])
nminus1cyclefcstackandbop.add_subsystem('d1', nminus1FuelCellStackComp(num_nodes=nn), promotes_inputs=['current_nminus1fcstack', 'pwr_el_nminus1fcmodule_bop'],
promotes_outputs=['ratio_nminus1powerfcstackbycellvoltage', 'eff_el_nminus1fcstack', 'pwr_el_del_per_nminus1fcsysmodule'])
nminus1cyclefcstackandbop.add_subsystem('d2', nminus1FuelCellBoPComp(num_nodes=nn),
promotes_inputs=['ratio_nminus1powerfcstackbycellvoltage', 'pwr_el_del_per_nminus1fcsysmodule'],
promotes_outputs=['pwr_el_nminus1fcmodule_bop', 'nminus1stack_airusage_rate','nminus1stack_hydrogenusage_rate','eff_nminus1fcsysmodule', 'nminus1stack_waterprodn_rate'])
nlsolver = nminus1cyclefcstackandbop.nonlinear_solver = om.NonlinearBlockGS()
# nlsolver = nminus1cyclefcstackandbop.nonlinear_solver = om.NewtonSolver(solve_subsystems=False)
# nlsolver = nminus1cyclefcstackandbop.nonlinear_solver = om.NewtonSolver(solve_subsystems=True)
# lsolver = nminus1cyclefcstackandbop.linear_solver = om.LinearBlockGS()
# lsolver = nminus1cyclefcstackandbop.linear_solver = om.ScipyKrylov()
lsolver = nminus1cyclefcstackandbop.linear_solver = om.DirectSolver()
iterations = 100
# lsolver.options['maxiter'] = iterations
lsolver.options['iprint'] = -1
nlsolver.options['maxiter'] = iterations
nlsolver.options['iprint'] = -1
# # nlsolver.options['rtol'] = 1e-16
# # nlsolver.options['atol'] = 1e-16
# nlsolver.options['err_on_non_converge'] = True
# nlsolver.options['debug_print'] = True
# if nlsolver == om.NonlinearBlockGS():
# nlsolver.options['use_aitken'] = False
# recorder = om.SqliteRecorder("casesnminus1fcsysmodule.sql")
# nlsolver.add_recorder(recorder)
# nlsolver.recording_options['record_abs_error'] = True
# nlsolver.recording_options['record_rel_error'] = True
# nlsolver.recording_options['record_inputs'] = True
# nlsolver.recording_options['record_outputs'] = True
# if nlsolver == om.NonlinearBlockGS():
# nlsolver.options['use_apply_nonlinear'] = True
# obj_cmp = om.ExecComp('obj = eff_el_nminus1fcstack', shape=nn, obj={'units': None}, eff_el_nminus1fcstack={'units': None})
# self.add_subsystem('obj_cmp', obj_cmp, promotes_inputs=['eff_el_nminus1fcstack'], promotes_outputs=['obj'])
# obj_cmp.declare_partials('*', '*', method='cs')
self.add_subsystem('obj_cmp', om.ExecComp('obj = eff_el_nminus1fcstack', shape=nn, obj={'units': None}, eff_el_nminus1fcstack={'units': None}), promotes_inputs=['eff_el_nminus1fcstack'], promotes_outputs=['obj'])
# self.add_constraint('obj', lower=0.50)
# self.add_objective('obj', scaler=-1)
# self.add_subsystem('con_cmp1', om.ExecComp('maxcon1 = pwr_el_req_per_nminus1fcsysmodule - pwr_el_del_per_nminus1fcsysmodule'), promotes_inputs=['pwr_el_del_per_nminus1fcsysmodule', 'pwr_el_req_per_nminus1fcsysmodule'], promotes_outputs=['maxcon1'])
# self.add_constraint('maxcon1', upper=0.0)
# prob = om.Problem()
# prob.model.add_subsystem('fcsysmodule', nminus1FCModuleGroup(num_nodes=1))
# prob.driver = om.ScipyOptimizeDriver()
# prob.driver.options['optimizer'] = 'SLSQP'
# prob.driver.options['maxiter'] = 100
# prob.driver.options['tol'] = 1e-16
# prob.model.add_design_var('fcsysmodule.current_nminus1fcstack', lower=5, upper=630)
# prob.model.add_objective('fcsysmodule.obj', scaler=1)
# # Ask OpenMDAO to finite-difference across the model to compute the gradients for the optimizer
# prob.model.approx_totals()
# prob.setup()
# # prob.model.list_inputs(units=True, shape=True)
# # prob.model.list_outputs(units=True, shape=True)
# # prob.check_partials(method='cs', compact_print=False, show_only_incorrect=True)
# # prob.check_partials(method='cs', compact_print=True, show_only_incorrect=True)
# # prob.set_solver_print(level=2)
# prob.run_driver()
# print('minimum found at')
# print(prob.get_val('fcsysmodule.current_nminus1fcstack'))
# print('Power delivered by FC System Module [W]')
# print(prob.get_val('fcsysmodule.pwr_el_del_per_nminus1fcsysmodule')[0])
# print('Power consumed by the air compressor [W]')
# print(prob.get_val('fcsysmodule.pwr_el_nminus1fcmodule_bop')[0])
# print('Stack Air Flow Rate [kg/s]')
# print(prob.get_val('fcsysmodule.nminus1stack_airusage_rate')[0])
# print('Stack Elec Efficiency [%]')
# print(prob.get_val('fcsysmodule.eff_el_nminus1fcstack')[0])
# print('Fuel Cell System Module Electrical Efficiency [%]')
# print(prob.get_val('fcsysmodule.eff_nminus1fcsysmodule')[0])
# print('Stack Hydrogen Usage rate [kg/s]')
# print(prob.get_val('fcsysmodule.nminus1stack_hydrogenusage_rate')[0])