-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathpycbc_dogsin_hist_sigmas_arrow
executable file
·304 lines (254 loc) · 10.8 KB
/
pycbc_dogsin_hist_sigmas_arrow
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
#!/usr/bin/env python
""" Make table of the foreground coincident events
"""
import argparse, h5py, numpy, logging, sys, lal
import matplotlib
matplotlib.use('PS')
import pylab
from scipy.special import erf, erfinv
def indices_within_times(times, start, end):
""" Return the an index array into times that give the values within the
durations defined by the start and end arrays
Parameters
----------
times: numpy.ndarray
Array of times
start: numpy.ndarray
Array of duration start times
end: numpy.ndarray
Array of duration end times
Returns
-------
indices: numpy.ndarray
Array of indices into times
"""
tsort = times.argsort()
times_sorted = times[tsort]
left = numpy.searchsorted(times_sorted, start)
right = numpy.searchsorted(times_sorted, end)
if len(left) == 0:
return numpy.array([], dtype=numpy.uint32)
return tsort[numpy.hstack(numpy.r_[s:e] for s, e in zip(left, right))]
pylab.rc('text', usetex=True)
pylab.rc('font', **{'family': 'sans-serif', 'sans-serif': ['Bitstream Vera Sans']})
pylab.rcParams.update({
"font.size": 14,
"axes.titlesize": 18,
"axes.labelsize": 18,
"xtick.labelsize": 16,
"ytick.labelsize": 16,
"legend.fontsize": 14,
"text.latex.preamble" : [
r"\usepackage{arev}",
r"\usepackage[T1]{fontenc}"
]
})
def sigma_from_p(p):
return - erfinv(1 - (1 - p) * 2) * 2**0.5
def p_from_sigma(sig):
return 1 - (1 - erf(sig / 2**0.5)) / 2
parser = argparse.ArgumentParser()
# General required options
#parser.add_argument('--version', action='version', version=version.git_verbose_msg)
parser.add_argument('--trigger-file')
parser.add_argument('--verbose', action='count')
parser.add_argument('--output-file')
parser.add_argument('--bin-size', type=float, default=0.1)
parser.add_argument('--x-min', type=float, default=8.0)
parser.add_argument('--x-max', type=float)
parser.add_argument('--y-min', type=float)
parser.add_argument('--y-max', type=float)
parser.add_argument('--trials-factor', type=int, default=1)
parser.add_argument('--cumulative', action='store_true')
parser.add_argument('--exclusive-bkg', action='store_true')
parser.add_argument('--closed-box', action='store_true',
help="Make a closed box version that excludes foreground triggers")
args = parser.parse_args()
if args.verbose:
log_level = logging.INFO
logging.basicConfig(format='%(asctime)s : %(message)s', level=log_level)
logging.info('Read in the data')
f = h5py.File(args.trigger_file, 'r')
try:
fstat = f['foreground/stat'][:]
fstat.sort()
except:
fstat = None
if len(fstat) == 0:
fstat = None
dec = f['background/decimation_factor'][:]
bstat = f['background/stat'][:]
fap = 1 - numpy.exp(- f.attrs['foreground_time'] / f['background/ifar'][:] / lal.YRJUL_SI)
s = bstat.argsort()
dec, bstat, fap = dec[s], bstat[s], fap[s]
logging.info('Found %s background (inclusive zerolag) triggers' % len(bstat))
# excise the triggers around the event
e = 1126259462.42749
window = 0.015
time1 = f['background/time1'][:][s]
time2 = f['background/time2'][:][s]
idx = indices_within_times(time1, [e - window], [e + window])
idx2 = indices_within_times(time2, [e - window],[e + window])
idx = numpy.concatenate([idx, idx2])
dec_exc = numpy.delete(dec, idx)
bstat_exc = numpy.delete(bstat, idx)
fap_exc = fap
logging.info('Found %s background (exclusive zerolag) triggers' % len(bstat_exc))
fig = pylab.figure()
gs = matplotlib.gridspec.GridSpec(3, 1, height_ratios=[1,1,14])
sp0 = pylab.subplot(gs[0])
pylab.gca().axes.get_yaxis().set_visible(False)
pylab.gca().axes.get_xaxis().set_visible(False)
sp1 = pylab.subplot(gs[1], sharex=sp0)
pylab.gca().axes.get_yaxis().set_visible(False)
sp1ax = pylab.gca().axes.get_xaxis()
sp1ax.set_visible(False)
axx2 = pylab.gca().twiny()
sp2 = pylab.subplot(gs[2], sharex=sp1)
fig.subplots_adjust(hspace=0)
if fstat is not None:
minimum = fstat.min()
maximum = max(fstat.max(), bstat.max())
else:
minimum = bstat.min()
maximum = bstat.max()
bins = numpy.arange(minimum, maximum + args.bin_size, args.bin_size)
# plot background minus foreground
pylab.gca().semilogy()
# plot full background
if not args.closed_box:
if args.exclusive_bkg:
count, _ = numpy.histogram(bstat_exc, bins=bins, weights=dec_exc * f.attrs['foreground_time'] / f.attrs['background_time_exc'])
count[numpy.where(count == 0)] = f.attrs['foreground_time'] / (1000.*f.attrs['background_time'])
exb = sp2.step(bins[:-1], count, where='post', linewidth=2, color=pylab.cm.Purples(5.1 / 7.), label='Background excluding GW150914')
count, _ = numpy.histogram(bstat, bins=bins, weights=dec * f.attrs['foreground_time'] / f.attrs['background_time'])
count[numpy.where(count == 0)] = f.attrs['foreground_time'] / (1000.*f.attrs['background_time'])
bg = sp2.step(bins[:-1], count, where='post', linewidth=2, color='black', label='Search Background')
if fstat is not None and not args.closed_box:
le, re = bins[:-1], bins[1:]
left = numpy.searchsorted(fstat, le)
right = numpy.searchsorted(fstat, re)
xpts = bins[:-1] + args.bin_size / 2.
count = (right - left) # / f.attrs['foreground_time']# * lal.YRJUL_SI
stars = (bins[:-1] > bstat.max()) & (count >= 1)
if stars.any():
staridx = numpy.where(stars)
starxpts = xpts[staridx]
starcount = count[staridx]
#xpts = xpts[numpy.where(~stars)]
#count = count[numpy.where(~stars)]
#pylab.scatter(xpts, count,
# label='Foreground',
# marker='o', edgecolors='white', lw=0.4, s=30, color='#ff6600', zorder=5)
fg = sp2.errorbar(xpts, count,
xerr=args.bin_size/2, label='Search Result',
fmt='s', mec='none', ms=8, capthick=1, barsabove=False, ecolor='w',
elinewidth=1, markerfacecolor='#ff6600', lw=1, color='w', zorder=10)
if stars.any():
#gw = sp2.scatter(starxpts, starcount,
# label='GW150914',
# marker='s', edgecolors='#ff6600', lw=0.3, s=10, color='#ff6600',
# zorder=5)
#pylab.gca().annotate('GW150914', xy=(starxpts[0], starcount[0]), xytext=(21.7,1e-3),
# arrowprops=dict(facecolor='black', shrink=0.07, width=1,
# headwidth=8),fontsize=14)
pylab.gca().arrow(starxpts[0], 8e-3, 0, 0.2-8e-3, head_width=0.3, head_length=0.2, fc='k', ec='k',zorder=11)
pylab.gca().text(21.9,2.0e-3,'GW150914',fontsize=14)
pylab.xlabel(r'Detection statistic $\hat{\rho}_c$',fontsize=18)
pylab.ylabel('Number of events',fontsize=18)
pylab.xlim(xmin=args.x_min, xmax=args.x_max)
#pylab.ylim(ymin=f.attrs['foreground_time'] / f.attrs['background_time_exc'])
pylab.ylim(ymin=args.y_min, ymax=args.y_max)
gridcolor = (0.8,0.8,0.8)
pylab.grid(b=True, which='major', color=gridcolor,linestyle='solid')
#pylab.grid()
handles, labels = pylab.gca().get_legend_handles_labels()
h1 = sorted(zip(labels, handles))
handles = [x[1] for x in h1]
labels = [x[0] for x in h1]
#leg = pylab.legend(handles, labels, loc='upper center', scatterpoints=1, numpoints=3)
if args.exclusive_bkg:
leg = pylab.legend([handles[2],handles[1],handles[0]], [labels[2],labels[1],labels[0]], loc='upper center', scatterpoints=1, numpoints=3)
else:
leg = pylab.legend([handles[2],handles[1]], [labels[2],labels[1]], loc='upper center', scatterpoints=1, numpoints=3)
#leg = pylab.legend([bg, exb, fg, gw], ['Search Background',
# 'Search background excluding GW150914', 'Search Result', 'GW150914'], loc='upper center', scatterpoints=1, numpoints=3)
end = sigma_from_p(fap.min() * args.trials_factor)
#end = 5
def rho_from_p(p, pofrho, rhos):
#idx = numpy.searchsorted(pofrho[::-1], p)
#print p, idx, rhos[::-1][idx-2:idx+3]
return rhos[::-1][numpy.searchsorted(pofrho[::-1], p)]
if not args.closed_box:
ax1 = pylab.gca()
ax2 = ax1.twiny()
#ax2.semilogy()
#ax2.set_ylim(ax1.get_ylim())
ax1.set_zorder(ax2.get_zorder()+1) # put axis1 on top
if hasattr(ax1, 'set_facecolor'):
ax1.set_facecolor('none')
else:
ax1.set_axis_bgcolor('none')
sigmas = numpy.array([2, 3, 4, end])
pvals = (1. - p_from_sigma(sigmas)) / args.trials_factor
pylab.sca(ax2)
sp1.axvspan(args.x_min, rho_from_p(pvals[0], fap, bstat), color=pylab.cm.Greys(1. / 8.), zorder=-1)
for ii,p in enumerate(pvals[:-1]):
nextp = pvals[ii+1]
rho = rho_from_p(p, fap, bstat)
nextrho = rho_from_p(nextp, fap, bstat)
sp1.axvspan(rho, nextrho, color=pylab.cm.Greys(sigmas[ii] / 8.), zorder=-1)
# add ticks
tickpoints = [8.55]+rho_from_p(pvals[0:], fap, bstat).tolist()+[23.8]
tickpoints[3] = tickpoints[3] - 0.2
tickpoints[4] = tickpoints[4] + 0.4
ticklabels = [r' ' % sigmas[0]]
#ticklabels = [r'$<%i$' % sigmas[0]]
#ticklabels = [r'$<%i$' % sigmas[0]]
ticklabels.append(r'$2\sigma$')
for sig in sigmas[1:]:
if sig == end:
ticklabels.append(r'$%.1f\sigma$' % sig)
else:
ticklabels.append(r'$%i\sigma$' % sig)
ticklabels.append(r'$> %.1f\sigma$' % end)
ax2.set_xticks(tickpoints)
ax2.set_xticklabels(ticklabels,fontsize=14)
ax2.tick_params(axis='x', pad=0, size=0)
ax2.set_xlim(ax1.get_xlim())
pylab.sca(axx2)
sp0.axvspan(args.x_min, rho_from_p(pvals[0], fap, bstat_exc), color=pylab.cm.Purples(1. / 7.), zorder=-1)
for ii,p in enumerate(pvals[:-1]):
nextp = pvals[ii+1]
rho = rho_from_p(p, fap, bstat_exc)
nextrho = rho_from_p(nextp, fap, bstat_exc)
sp0.axvspan(rho, nextrho, color=pylab.cm.Purples(sigmas[ii] / 7.), zorder=-1)
# add ticks
tickpoints = [8.55]+rho_from_p(pvals[0:], fap, bstat_exc).tolist()+[23.8]
tickpoints[2] = tickpoints[2] + 0.2
tickpoints[4] = tickpoints[4] + 0.1
ticklabels = [r' ' % sigmas[0]]
#ticklabels = [r'$<%i$' % sigmas[0]]
#ticklabels = [r'$<%i$' % sigmas[0]]
ticklabels.append(r'$2\sigma$')
for sig in sigmas[1:]:
if sig == end:
ticklabels.append(r'$%.1f\sigma$' % sig)
#ticklabels.append(r' ' % sig)
else:
ticklabels.append(r'$%i\sigma$' % sig)
ticklabels.append(r'$> %.1f\sigma$' % end)
axx2.set_xticks(tickpoints)
axx2.set_xticklabels(ticklabels,fontsize=14)
axx2.tick_params(axis='x', pad=0, size=0)
axx2.set_xlim(ax1.get_xlim())
pylab.sca(ax1)
xticks = [8, 10, 12, 14, 16, 18, 20, 22, 24]
ax1.set_xticks(xticks)
ax1.set_xticklabels(['%i' % x for x in xticks])
pylab.title("Binary coalescence search",y=1.15)
pylab.savefig(args.output_file, bbox_inches='tight')
#results.save_fig_with_metadata(fig, args.output_file,
# title="%s bin, Count vs Rank" % f.attrs['name'] if 'name' in f.attrs else "Count vs Rank",
# caption="Histogram of the FAR vs the ranking statistic in the search.",
# cmd=' '.join(sys.argv))