-
Notifications
You must be signed in to change notification settings - Fork 51
/
AMOVA.html
829 lines (755 loc) · 34.6 KB
/
AMOVA.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<title>AMOVA</title>
<script src="site_libs/jquery-1.11.3/jquery.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/sandstone.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<script src="site_libs/accessible-code-block-0.0.1/empty-anchor.js"></script>
<link href="site_libs/anchor-sections-1.0/anchor-sections.css" rel="stylesheet" />
<script src="site_libs/anchor-sections-1.0/anchor-sections.js"></script>
<!-- Global Site Tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-107144798-3"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments)};
gtag('js', new Date());
gtag('config', 'UA-107144798-3');
</script>
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<style type="text/css">code{white-space: pre;}</style>
<style type="text/css" data-origin="pandoc">
code.sourceCode > span { display: inline-block; line-height: 1.25; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode { white-space: pre; position: relative; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
code.sourceCode { white-space: pre-wrap; }
code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ background-color: #f8f8f8; }
@media screen {
code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ef2929; } /* Alert */
code span.an { color: #8f5902; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #c4a000; } /* Attribute */
code span.bn { color: #0000cf; } /* BaseN */
code span.cf { color: #204a87; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4e9a06; } /* Char */
code span.cn { color: #000000; } /* Constant */
code span.co { color: #8f5902; font-style: italic; } /* Comment */
code span.cv { color: #8f5902; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #8f5902; font-weight: bold; font-style: italic; } /* Documentation */
code span.dt { color: #204a87; } /* DataType */
code span.dv { color: #0000cf; } /* DecVal */
code span.er { color: #a40000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #0000cf; } /* Float */
code span.fu { color: #000000; } /* Function */
code span.im { } /* Import */
code span.in { color: #8f5902; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #204a87; font-weight: bold; } /* Keyword */
code span.op { color: #ce5c00; font-weight: bold; } /* Operator */
code span.ot { color: #8f5902; } /* Other */
code span.pp { color: #8f5902; font-style: italic; } /* Preprocessor */
code span.sc { color: #000000; } /* SpecialChar */
code span.ss { color: #4e9a06; } /* SpecialString */
code span.st { color: #4e9a06; } /* String */
code span.va { color: #000000; } /* Variable */
code span.vs { color: #4e9a06; } /* VerbatimString */
code span.wa { color: #8f5902; font-weight: bold; font-style: italic; } /* Warning */
</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
var sheets = document.styleSheets;
for (var i = 0; i < sheets.length; i++) {
if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
try { var rules = sheets[i].cssRules; } catch (e) { continue; }
for (var j = 0; j < rules.length; j++) {
var rule = rules[j];
// check if there is a div.sourceCode rule
if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") continue;
var style = rule.style.cssText;
// check if color or background-color is set
if (rule.style.color === '' && rule.style.backgroundColor === '') continue;
// replace div.sourceCode by a pre.sourceCode rule
sheets[i].deleteRule(j);
sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
}
}
})();
</script>
<style type="text/css">
pre:not([class]) {
background-color: white;
}
</style>
<style type="text/css">
h1 {
font-size: 34px;
}
h1.title {
font-size: 38px;
}
h2 {
font-size: 30px;
}
h3 {
font-size: 24px;
}
h4 {
font-size: 18px;
}
h5 {
font-size: 16px;
}
h6 {
font-size: 12px;
}
.table th:not([align]) {
text-align: left;
}
</style>
<link rel="stylesheet" href="styles.css" type="text/css" />
<style type = "text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
code {
color: inherit;
background-color: rgba(0, 0, 0, 0.04);
}
img {
max-width:100%;
}
.tabbed-pane {
padding-top: 12px;
}
.html-widget {
margin-bottom: 20px;
}
button.code-folding-btn:focus {
outline: none;
}
summary {
display: list-item;
}
</style>
<style type="text/css">
/* padding for bootstrap navbar */
body {
padding-top: 61px;
padding-bottom: 40px;
}
/* offset scroll position for anchor links (for fixed navbar) */
.section h1 {
padding-top: 66px;
margin-top: -66px;
}
.section h2 {
padding-top: 66px;
margin-top: -66px;
}
.section h3 {
padding-top: 66px;
margin-top: -66px;
}
.section h4 {
padding-top: 66px;
margin-top: -66px;
}
.section h5 {
padding-top: 66px;
margin-top: -66px;
}
.section h6 {
padding-top: 66px;
margin-top: -66px;
}
.dropdown-submenu {
position: relative;
}
.dropdown-submenu>.dropdown-menu {
top: 0;
left: 100%;
margin-top: -6px;
margin-left: -1px;
border-radius: 0 6px 6px 6px;
}
.dropdown-submenu:hover>.dropdown-menu {
display: block;
}
.dropdown-submenu>a:after {
display: block;
content: " ";
float: right;
width: 0;
height: 0;
border-color: transparent;
border-style: solid;
border-width: 5px 0 5px 5px;
border-left-color: #cccccc;
margin-top: 5px;
margin-right: -10px;
}
.dropdown-submenu:hover>a:after {
border-left-color: #ffffff;
}
.dropdown-submenu.pull-left {
float: none;
}
.dropdown-submenu.pull-left>.dropdown-menu {
left: -100%;
margin-left: 10px;
border-radius: 6px 0 6px 6px;
}
</style>
<script>
// manage active state of menu based on current page
$(document).ready(function () {
// active menu anchor
href = window.location.pathname
href = href.substr(href.lastIndexOf('/') + 1)
if (href === "")
href = "index.html";
var menuAnchor = $('a[href="' + href + '"]');
// mark it active
menuAnchor.parent().addClass('active');
// if it's got a parent navbar menu mark it active as well
menuAnchor.closest('li.dropdown').addClass('active');
});
</script>
<!-- tabsets -->
<style type="text/css">
.tabset-dropdown > .nav-tabs {
display: inline-table;
max-height: 500px;
min-height: 44px;
overflow-y: auto;
background: white;
border: 1px solid #ddd;
border-radius: 4px;
}
.tabset-dropdown > .nav-tabs > li.active:before {
content: "";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li.active:before {
content: "";
border: none;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open:before {
content: "";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs > li.active {
display: block;
}
.tabset-dropdown > .nav-tabs > li > a,
.tabset-dropdown > .nav-tabs > li > a:focus,
.tabset-dropdown > .nav-tabs > li > a:hover {
border: none;
display: inline-block;
border-radius: 4px;
background-color: transparent;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li {
display: block;
float: none;
}
.tabset-dropdown > .nav-tabs > li {
display: none;
}
</style>
<!-- code folding -->
</head>
<body>
<div class="container-fluid main-container">
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="index.html">Population genetics and genomics in R</a>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="TOC.html">Table of contents</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Part I
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="Introduction.html">Introduction</a>
</li>
<li>
<a href="Getting_ready_to_use_R.html">Getting ready to use R</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Part II
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="Data_Preparation.html">Data preparation</a>
</li>
<li>
<a href="First_Steps.html">First steps</a>
</li>
<li>
<a href="Population_Strata.html">Population strata and clone correction</a>
</li>
<li>
<a href="Locus_Stats.html">Locus-based statistics and missing data</a>
</li>
<li>
<a href="Genotypic_EvenRichDiv.html">Genotypic evenness, richness, and diversity</a>
</li>
<li>
<a href="Linkage_disequilibrium.html">Linkage disequilibrium</a>
</li>
<li>
<a href="Pop_Structure.html">Population structure</a>
</li>
<li>
<a href="Minimum_Spanning_Networks.html">Minimum Spanning Networks</a>
</li>
<li>
<a href="AMOVA.html">AMOVA</a>
</li>
<li>
<a href="DAPC.html">Discriminant analysis of principal components (DAPC)</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Part III
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="intro_vcf.html">Population genomics and HTS</a>
</li>
<li>
<a href="reading_vcf.html">Reading VCF data</a>
</li>
<li>
<a href="analysis_of_genome.html">Analysis of genomic data</a>
</li>
<li>
<a href="gbs_analysis.html">Analysis of GBS data</a>
</li>
<li>
<a href="clustering_plot.html">Clustering plot</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Workshops
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li class="dropdown-submenu">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">ICPP</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="workshop_icpp.html">Preparation</a>
</li>
<li>
<a href="intro_vcf.html">Introduction</a>
</li>
<li>
<a href="reading_vcf.html">VCF data</a>
</li>
<li>
<a href="quality_control.html">Quality control</a>
</li>
<li>
<a href="gbs_analysis.html">Analysis of GBS data</a>
</li>
<li>
<a href="analysis_of_genome.html">Analysis of genome data</a>
</li>
</ul>
</li>
<li class="dropdown-submenu">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">APS Southern Division</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="workshop_southernAPS.html">Preparation</a>
</li>
<li>
<a href="intro_vcf.html">Introduction</a>
</li>
<li>
<a href="reading_vcf.html">VCF data</a>
</li>
<li>
<a href="quality_control.html">Quality control</a>
</li>
<li>
<a href="gbs_analysis.html">Analysis of GBS data</a>
</li>
</ul>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
About
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="Authors.html">Authors</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Appendices
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="intro_to_R.html">Introduction to R</a>
</li>
<li>
<a href="Data_sets.html">Data sets</a>
</li>
<li>
<a href="funpendix.html">Function glossary</a>
</li>
<li>
<a href="background_functions.html">Background_functions</a>
</li>
<li>
<a href="https://github.com/grunwaldlab/Population_Genetics_in_R/">Source Code</a>
</li>
</ul>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
<div class="fluid-row" id="header">
<h1 class="title toc-ignore">AMOVA</h1>
<h3 class="subtitle"><em>ZN Kamvar, SE Everhart and NJ Grünwald</em></h3>
</div>
<p>In this chapter, we will utilize AMOVA to analyze our populations. AMOVA stands for <strong>A</strong>nalysis of <strong>MO</strong>lecular <strong>VA</strong>riance and is a method to detect population differentiation utilizing molecular markers <span class="citation">(Excoffier, Smouse & Quattro, 1992)</span>. This procedure was initially implemented for DNA haplotypes, but applies to any marker system. The implementation of AMOVA in <em>poppr</em> requires two very basic components: (1) A distance matrix derived from the data and (2) a separate table used to partition the data into different stratifications.</p>
<p>The distance matrix can be calculated using any distance as long as it is euclidean. The distance that is used in the program Arlequin is the opposite of the Kronecker Delta function that counts the number of differences summed over <span class="math inline">\(L\)</span> loci:</p>
<p><span class="math display">\[
\delta_{l,m} = \begin{cases}
1 \text{ if } m = l,\\
0 \text{ if } m \neq l
\end{cases}
\]</span> <span class="math display">\[
d_{i,j} = \sum_{L = 1}^L 1 - \delta_{i,j}
\]</span></p>
<div id="data-set" class="section level2">
<h2>Data set</h2>
<p>To calculate AMOVA in <em>poppr</em>, one simply needs to supply a data set with stratifications. We will use the <em>Aphanomyces euteiches</em> data set from <span class="citation">(Grünwald & Hoheisel, 2006)</span>.</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1"></a><span class="kw">library</span>(<span class="st">"poppr"</span>)</span>
<span id="cb1-2"><a href="#cb1-2"></a><span class="kw">data</span>(<span class="st">"Aeut"</span>)</span>
<span id="cb1-3"><a href="#cb1-3"></a><span class="kw">strata</span>(Aeut) <-<span class="st"> </span><span class="kw">data.frame</span>(<span class="kw">other</span>(Aeut)<span class="op">$</span>population_hierarchy)</span>
<span id="cb1-4"><a href="#cb1-4"></a>Aeut <-<span class="st"> </span><span class="kw">as.genclone</span>(Aeut)</span>
<span id="cb1-5"><a href="#cb1-5"></a>Aeut</span></code></pre></div>
<pre><code>##
## This is a genclone object
## -------------------------
## Genotype information:
##
## 119 original multilocus genotypes
## 187 diploid individuals
## 56 dominant loci
##
## Population information:
##
## 3 strata - Pop_Subpop, Pop, Subpop
## 2 populations defined - Athena, Mt. Vernon</code></pre>
<p>We can see that this data set contains clonal data and has three stratifications where the first is really a combination of the other levels. We can take a look at the different stratifications, populations or subpopulations:</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1"></a><span class="kw">table</span>(<span class="kw">strata</span>(Aeut, <span class="op">~</span>Pop)) <span class="co"># Populations</span></span></code></pre></div>
<pre><code>##
## Athena Mt. Vernon
## 97 90</code></pre>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1"></a><span class="kw">table</span>(<span class="kw">strata</span>(Aeut, <span class="op">~</span>Pop<span class="op">/</span>Subpop, <span class="dt">combine =</span> <span class="ot">FALSE</span>)) <span class="co"># Subpopulations</span></span></code></pre></div>
<pre><code>## Subpop
## Pop 1 2 3 4 5 6 7 8 9 10
## Athena 9 12 10 13 10 5 11 8 10 9
## Mt. Vernon 10 6 8 12 17 12 12 13 0 0</code></pre>
<p>In this example, we have a data set of 187 individuals sampled from two fields located in Athena or Mt. Vernon over 8 or 10 different soil samples within each field. We want to see if most of the variance is observed at the sample, field, or regional level.</p>
</div>
<div id="analysis" class="section level2">
<h2>Analysis</h2>
<p>In panmictic populations, we would expect to see most of the variance arise from within samples. If we see that the most of the variance occurs among samples within populations or among populations, then there is evidence that we have some sort of population structure. In the case of clonal organisms, this would help support a hypothesis of clonal reproduction. Since <em>Aphanomyces eutieches</em> is known to be clonal, we would not expect most of the variance to come from within samples.</p>
<p>Let’s invoke the AMOVA functions with and without clone correction:</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1"></a>Aeutamova <-<span class="st"> </span><span class="kw">poppr.amova</span>(Aeut, <span class="op">~</span>Pop<span class="op">/</span>Subpop)</span>
<span id="cb7-2"><a href="#cb7-2"></a>Aeutamovacc <-<span class="st"> </span><span class="kw">poppr.amova</span>(Aeut, <span class="op">~</span>Pop<span class="op">/</span>Subpop, <span class="dt">clonecorrect =</span> <span class="ot">TRUE</span>)</span></code></pre></div>
<p>We’ll look at the AMOVA results for both analyses.</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1"></a>Aeutamova</span></code></pre></div>
<pre><code>## $call
## ade4::amova(samples = xtab, distances = xdist, structures = xstruct)
##
## $results
## Df Sum Sq Mean Sq
## Between Pop 1 1051.2345 1051.234516
## Between samples Within Pop 16 273.4575 17.091091
## Within samples 169 576.5059 3.411277
## Total 186 1901.1979 10.221494
##
## $componentsofcovariance
## Sigma %
## Variations Between Pop 11.063446 70.006786
## Variations Between samples Within Pop 1.328667 8.407483
## Variations Within samples 3.411277 21.585732
## Total variations 15.803391 100.000000
##
## $statphi
## Phi
## Phi-samples-total 0.7841427
## Phi-samples-Pop 0.2803128
## Phi-Pop-total 0.7000679</code></pre>
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1"></a>Aeutamovacc</span></code></pre></div>
<pre><code>## $call
## ade4::amova(samples = xtab, distances = xdist, structures = xstruct)
##
## $results
## Df Sum Sq Mean Sq
## Between Pop 1 741.9872 741.987234
## Between samples Within Pop 16 185.6877 11.605483
## Within samples 123 520.1123 4.228555
## Total 140 1447.7872 10.341337
##
## $componentsofcovariance
## Sigma %
## Variations Between Pop 10.4131525 66.777680
## Variations Between samples Within Pop 0.9520545 6.105355
## Variations Within samples 4.2285550 27.116965
## Total variations 15.5937620 100.000000
##
## $statphi
## Phi
## Phi-samples-total 0.7288303
## Phi-samples-Pop 0.1837727
## Phi-Pop-total 0.6677768</code></pre>
<p>The first thing to look at are the <code>$results</code> element. The degrees of freedom (the <code>Df</code> column) should match what we expect from our (not clone-corrected) data. The number in the <code>Total</code> row should equal 186 or <span class="math inline">\(N - 1\)</span>, where values are calculated from pooled data. Note that here, “samples” actually refers to subpopulations since we cannot asses within-sample variance of dominant data.</p>
<p>The <code>$componentsofcovariance</code> table shows how much variance is detected at each stratification. We expect variations within samples to give the greatest amount of variation for populations that are not significantly differentiated. <code>Sigma</code> represents the variance, <span class="math inline">\(\sigma\)</span>, for each hierarchical level and to the right is the percent of the total.</p>
<p>Finally, <code>$statphi</code> provides the <span class="math inline">\(\phi\)</span> population differentiation statistics. These are used to test hypotheses about population differentiation. We would expect a higher <span class="math inline">\(\phi\)</span> statistic to represent a higher amount of differentiation.</p>
<p>Note, if you want to make a table of any of these components, you can isolate them by using the <code>$</code> operator and then export it to a table with <code>write.table</code>. Here’s an example with the components of covariance:</p>
<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1"></a><span class="kw">write.table</span>(Aeutamova<span class="op">$</span>componentsofcovariance, <span class="dt">sep =</span> <span class="st">","</span>, <span class="dt">file =</span> <span class="st">"~/Documents/AeutiechesAMOVA.csv"</span>)</span></code></pre></div>
</div>
<div id="significance-testing" class="section level2">
<h2>Significance testing</h2>
<p>To test if populations are significantly different, we perform a randomization test using the function <code>randtest()</code> from the <em>ade4</em> package. This will randomly permute the sample matrices as described in <span class="citation">(Excoffier et al., 1992)</span>.</p>
<div class="sourceCode" id="cb13"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1"></a><span class="kw">set.seed</span>(<span class="dv">1999</span>)</span>
<span id="cb13-2"><a href="#cb13-2"></a>Aeutsignif <-<span class="st"> </span><span class="kw">randtest</span>(Aeutamova, <span class="dt">nrepet =</span> <span class="dv">999</span>)</span>
<span id="cb13-3"><a href="#cb13-3"></a>Aeutccsignif <-<span class="st"> </span><span class="kw">randtest</span>(Aeutamovacc, <span class="dt">nrepet =</span> <span class="dv">999</span>)</span></code></pre></div>
<div class="sourceCode" id="cb14"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1"></a><span class="kw">plot</span>(Aeutsignif)</span></code></pre></div>
<p><img src="AMOVA_files/figure-html/Aeut_random_plot-1.png" width="700px" /></p>
<div class="sourceCode" id="cb15"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1"></a>Aeutsignif</span></code></pre></div>
<pre><code>## class: krandtest lightkrandtest
## Monte-Carlo tests
## Call: randtest.amova(xtest = Aeutamova, nrepet = 999)
##
## Number of tests: 3
##
## Adjustment method for multiple comparisons: none
## Permutation number: 999
## Test Obs Std.Obs Alter Pvalue
## 1 Variations within samples 3.411277 -31.902575 less 0.001
## 2 Variations between samples 1.328667 20.986193 greater 0.001
## 3 Variations between Pop 11.063446 9.120263 greater 0.001</code></pre>
<p>From this output, you can see three histograms representing the distribution of the randomized strata. The black line represents the observed data. You can see a table of observed results in the output showing that there is significant population structure considering all levels of the population strata. Of course, this could be due to the presence of clones, so let’s visualize the results from the clone corrected data set below:</p>
<div class="sourceCode" id="cb17"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1"></a><span class="kw">plot</span>(Aeutccsignif)</span></code></pre></div>
<p><img src="AMOVA_files/figure-html/Aeut_clonecorrect_random_plot-1.png" width="700px" /></p>
<div class="sourceCode" id="cb18"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1"></a>Aeutccsignif</span></code></pre></div>
<pre><code>## class: krandtest lightkrandtest
## Monte-Carlo tests
## Call: randtest.amova(xtest = Aeutamovacc, nrepet = 999)
##
## Number of tests: 3
##
## Adjustment method for multiple comparisons: none
## Permutation number: 999
## Test Obs Std.Obs Alter Pvalue
## 1 Variations within samples 4.2285550 -22.250873 less 0.001
## 2 Variations between samples 0.9520545 9.821081 greater 0.001
## 3 Variations between Pop 10.4131525 9.983940 greater 0.001</code></pre>
<p>The above graphs show significant population differentiation at all levels given that the observed <span class="math inline">\(\phi\)</span> does not fall within the distribution expected from the permutation. Compare the results of our AMOVA analysis to those published in <span class="citation">(Grünwald & Hoheisel, 2006)</span>. They should be identical.</p>
</div>
<div id="randomized-population-structure" class="section level2">
<h2>Randomized population structure</h2>
<p>Since AMOVA is used to detect whether or not there is significant population structure, we can see what happens when we randomly shuffle the population assignments in our data. Here we will show what the populations look like before and after shuffling:</p>
<div class="sourceCode" id="cb20"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1"></a>Aeut.new <-<span class="st"> </span>Aeut</span>
<span id="cb20-2"><a href="#cb20-2"></a><span class="kw">head</span>(<span class="kw">strata</span>(Aeut)[, <span class="dv">-1</span>])</span></code></pre></div>
<pre><code>## Pop Subpop
## 001 Athena 1
## 002 Athena 1
## 003 Athena 1
## 004 Athena 1
## 005 Athena 1
## 006 Athena 1</code></pre>
<div class="sourceCode" id="cb22"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1"></a><span class="kw">set.seed</span>(<span class="dv">9001</span>)</span>
<span id="cb22-2"><a href="#cb22-2"></a><span class="kw">head</span>(<span class="kw">strata</span>(Aeut)[<span class="kw">sample</span>(<span class="kw">nInd</span>(Aeut)), <span class="dv">-1</span>])</span></code></pre></div>
<pre><code>## Pop Subpop
## 078 Athena 8
## 066 Athena 7
## 009 Athena 1
## 053 Athena 5
## 101 Mt. Vernon 1
## 176 Mt. Vernon 8</code></pre>
<p>Here we see that the populations are completely shuffled, so in the next step, we will reassign the strata with these newly shuffled populations and rerun the AMOVA analysis.</p>
<div class="sourceCode" id="cb24"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb24-1"><a href="#cb24-1"></a><span class="kw">set.seed</span>(<span class="dv">9001</span>)</span>
<span id="cb24-2"><a href="#cb24-2"></a><span class="kw">strata</span>(Aeut.new) <-<span class="st"> </span><span class="kw">strata</span>(Aeut)[<span class="kw">sample</span>(<span class="kw">nInd</span>(Aeut)), <span class="dv">-1</span>]</span>
<span id="cb24-3"><a href="#cb24-3"></a>Aeut.new.amova <-<span class="st"> </span><span class="kw">poppr.amova</span>(Aeut.new, <span class="op">~</span>Pop<span class="op">/</span>Subpop)</span>
<span id="cb24-4"><a href="#cb24-4"></a>Aeut.new.amova</span></code></pre></div>
<pre><code>## $call
## ade4::amova(samples = xtab, distances = xdist, structures = xstruct)
##
## $results
## Df Sum Sq Mean Sq
## Between Pop 1 9.61848 9.61848
## Between samples Within Pop 16 191.56812 11.97301
## Within samples 169 1700.01126 10.05924
## Total 186 1901.19786 10.22149
##
## $componentsofcovariance
## Sigma %
## Variations Between Pop -0.0269566 -0.2638108
## Variations Between samples Within Pop 0.1858770 1.8190852
## Variations Within samples 10.0592382 98.4447256
## Total variations 10.2181586 100.0000000
##
## $statphi
## Phi
## Phi-samples-total 0.015552744
## Phi-samples-Pop 0.018142989
## Phi-Pop-total -0.002638108</code></pre>
<div class="sourceCode" id="cb26"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb26-1"><a href="#cb26-1"></a>Aeut.new.amova.test <-<span class="st"> </span><span class="kw">randtest</span>(Aeut.new.amova, <span class="dt">nrepet =</span> <span class="dv">999</span>)</span>
<span id="cb26-2"><a href="#cb26-2"></a>Aeut.new.amova.test</span></code></pre></div>
<pre><code>## class: krandtest lightkrandtest
## Monte-Carlo tests
## Call: randtest.amova(xtest = Aeut.new.amova, nrepet = 999)
##
## Number of tests: 3
##
## Adjustment method for multiple comparisons: none
## Permutation number: 999
## Test Obs Std.Obs Alter Pvalue
## 1 Variations within samples 10.0592382 -0.7192877 less 0.219
## 2 Variations between samples 0.1858770 0.7365473 greater 0.233
## 3 Variations between Pop -0.0269566 -0.2131293 greater 0.421</code></pre>
<div class="sourceCode" id="cb28"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb28-1"><a href="#cb28-1"></a><span class="kw">plot</span>(Aeut.new.amova.test)</span></code></pre></div>
<p><img src="AMOVA_files/figure-html/randomized_strata_plot-1.png" width="700px" /></p>
<p>We see that there now is no significant population structure.</p>
</div>
<div id="conclusions" class="section level2">
<h2>Conclusions</h2>
<p>AMOVA is a powerful tool that can help support hypotheses of population structure due to clonal reproduction or isolation without making assumptions about Hardy-Weinberg equilibrium. We have shown that we can reject the <span class="math inline">\(H_o\)</span> of random mating between the two populations and have strong evidence that these populations are significantly differentiated at all stratifications <span class="citation">(Grünwald & Hoheisel, 2006)</span>. From these results, we can investigate hypotheses as to why these populations are significantly differentiated.</p>
<p>This example was performed with a data set of dominant (AFLP) markers, but it can also be performed on codominant markers such as SNPs or SSRs. These provide more information because within sample (individual) variance is also assessed. If one wants to utilize a genetic distance that has biological relevance, a different distance matrix can be chosen. See <code>help('amova', package = 'poppr')</code> for more details.</p>
</div>
<div id="references" class="section level2">
<h2>References</h2>
<!----------->
<div id="refs" class="references">
<div id="ref-excoffier1992analysis">
<p>Excoffier L., Smouse PE., Quattro JM. 1992. Analysis of molecular variance inferred from metric distances among dna haplotypes: Application to human mitochondrial dna restriction data. <em>Genetics</em> 131:479–491. Available at: <a href="http://www.genetics.org/content/131/2/479.abstract">http://www.genetics.org/content/131/2/479.abstract</a></p>
</div>
<div id="ref-grunwald2006hierarchical">
<p>Grünwald NJ., Hoheisel G-A. 2006. Hierarchical analysis of diversity, selfing, and genetic differentiation in populations of the oomycete <em>aphanomyces euteiches</em>. <em>Phytopathology</em> 96:1134–1141. Available at: <a href="http://apsjournals.apsnet.org/doi/abs/10.1094/PHYTO-96-1134">http://apsjournals.apsnet.org/doi/abs/10.1094/PHYTO-96-1134</a></p>
</div>
</div>
</div>
</div>
<script>
// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
$('tr.odd').parent('tbody').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
bootstrapStylePandocTables();
});
</script>
<!-- tabsets -->
<script>
$(document).ready(function () {
window.buildTabsets("TOC");
});
$(document).ready(function () {
$('.tabset-dropdown > .nav-tabs > li').click(function () {
$(this).parent().toggleClass('nav-tabs-open')
});
});
</script>
<!-- code folding -->
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>