-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGrCore.agda
412 lines (336 loc) · 14.4 KB
/
GrCore.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
{-# OPTIONS --allow-unsolved-metas --rewriting #-}
module GrCore where
open import Data.Product
open import Data.Sum
open import Data.Nat.Properties using (+-identityʳ; +-suc; +-comm; +-assoc)
open import Data.Nat hiding (_≟_; _≤_)
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
open import Data.Bool hiding (_≟_; _≤_)
open import Data.Maybe
open import Data.Empty
open import Data.Unit
open import Data.Fin using (Fin; _≟_; raise; fromℕ; inject; inject!; compare)
open import Semiring
open Semiring.Semiring {{...}} public
variable
s : ℕ
-- # Types of GrCore
data Type {{R : Semiring}} : Set where
FunTy : (A : Type) -> (r : grade) -> (B : Type) -> Type -- A r -> B
Unit : Type
Box : (r : grade) -> Type -> Type
--------------------------------------------------
ProdTy : Type -> Type -> Type
-- Sum : Type -> Type -> Type
BoolTy : Type
-- # Contexts for GrCore
data Assumption {{R : Semiring}} : Set where
-- Lin : (A : Type) -> Assumption A
Grad : (A : Type) -> (r : grade) -> Assumption
-- position 0 is Grad r A
-- position 1 is Grade s B
-- Ext (Ext Empty (Grad s B)) (Grad r A)
-- . , x :_s B , y :_r A
data Context {{R : Semiring}} : ℕ -> Set where
Empty : Context 0
Ext : {s : ℕ} -> Context s -> Assumption -> Context (1 + s)
-- # Some properties of contexts
injGradTy : {{R : Semiring}} {A A' : Type} {r r' : grade} -> Grad A r ≡ Grad A' r' -> A ≡ A'
injGradTy refl = refl
injGradR : {{R : Semiring}} {A A' : Type} {r r' : grade} -> Grad A r ≡ Grad A' r' -> r ≡ r'
injGradR refl = refl
injExt1 : {{R : Semiring}} {s : ℕ} {Γ Γ' : Context s} {A A' : Assumption} -> Ext Γ A ≡ Ext Γ' A' -> Γ ≡ Γ'
injExt1 refl = refl
injExt2 : {{R : Semiring}} {s : ℕ} {Γ Γ' : Context s} {A A' : Assumption} -> Ext Γ A ≡ Ext Γ' A' -> A ≡ A'
injExt2 refl = refl
-- # Context operations
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Rewrite
{-# REWRITE +-identityʳ +-suc #-}
-- Disjoint context concatentation
_,,_ : {{R : Semiring}} {s t : ℕ} -> Context s -> Context t -> Context (s + t)
G1 ,, Empty = G1
G1 ,, (Ext G2 a) = Ext (G1 ,, G2) a
-- OLD
--Empty ,, G2 = G2
--(Ext G1 a) ,, G2 = Ext (G1 ,, G2) a
-- Context scalar multiplication
_·_ : {{R : Semiring}} {s : ℕ} -> grade -> Context s -> Context s
r · Empty = Empty
r · Ext g (Grad A s) = Ext (r · g) (Grad A (r *R s))
-- Context addition
_++_ : {{R : Semiring}} {s : ℕ} -> Context s -> Context s -> Context s
Empty ++ Empty = Empty
(Ext G (Grad A r)) ++ (Ext G' (Grad B s)) = Ext (G ++ G') (Grad A (r +R s))
-- Context scalar multiplication distributes with context contactentation
multConcatDistr : {{R : Semiring}} {s t : ℕ} {r : grade} {Γ1 : Context s} {Γ2 : Context t} ->
r · (Γ1 ,, Γ2) ≡ ((r · Γ1) ,, (r · Γ2))
multConcatDistr ⦃ R ⦄ {.0} {t} {r} {Empty} {Γ2} = {!!}
multConcatDistr ⦃ R ⦄ {suc n} {t} {r} {Ext Γ1 (Grad A s)} {Γ2}
rewrite multConcatDistr {n} {t} {r} {Γ1} {Γ2} = {!!}
postulate -- TODO: Vilem prove these
-- keeps things simple with the above definition
sameTypes : {{R : Semiring}} {s : ℕ} {Γ1 Γ2 : Context s} {Γ : Context (suc s)} {A A' : Type} {r1 r2 : grade}
-> (Ext Γ1 (Grad A r1)) ++ (Ext Γ2 (Grad A' r2)) ≡ Γ -> A ≡ A'
import Relation.Binary.PropositionalEquality as Eq
open Eq.≡-Reasoning
absorptionContext : {{R : Semiring}} {s : ℕ} {Γ Γ' : Context s} -> (0R · Γ) ++ Γ' ≡ Γ'
absorptionContext {s = _} {Empty} {Empty}
= refl
absorptionContext {s = _} {Ext Γ (Grad A1 r1)} {Ext Γ' (Grad A2 r2)} rewrite absorptionContext {_} {Γ} {Γ'}
= let
e : {r1 r2 : grade} → (0R *R r1) +R r2 ≡ r2
e {r1} {r2} =
(0R *R r1) +R r2
≡⟨ cong (_+R r2) leftAbsorb ⟩
0R +R r2
≡⟨ leftUnit+ ⟩
r2
∎
in -- need to use sameTypes
{! !} -- cong (\r → Ext Γ' (Grad _ r)) e
-- Ext Γ' (Grad A1 ((R Semiring.+R (R Semiring.*R Semiring.0R R) r1) r2))
-- ≡ Ext Γ' (Grad A2 r2)
leftUnitContext : {{R : Semiring}} {s : ℕ} {Γ : Context s} -> 1R · Γ ≡ Γ
leftUnitContext {_} {Empty} = refl
leftUnitContext {suc s} {Γ = Ext G (Grad A r)} rewrite leftUnitContext {s} {G} =
cong (λ r → Ext G (Grad A r)) leftUnit*
Γlength : {{R : Semiring}} {s : ℕ} -> Context s -> ℕ
Γlength Empty = 0
Γlength (Ext g a) = 1 + Γlength g
-- # Term calculus
data Term : ℕ -> Set where
Var : {s : ℕ} -> Fin (suc s) -> Term (suc s)
App : {s : ℕ} -> Term s -> Term s -> Term s
Abs : {s : ℕ} -> Term (suc s) -> Term s
unit : {s : ℕ} -> Term s
Promote : {s : ℕ} -> Term s -> Term s
Let : {s : ℕ} -> Term s -> Term (suc s) -> Term s
-- handling bools (TODO: generalise to sums)
vtrue : {s : ℕ} -> Term s
vfalse : {s : ℕ} -> Term s
If : {s : ℕ} -> Term s -> Term s -> Term s -> Term s
-- handling products
tuple : {s : ℕ} -> Term s -> Term s -> Term s
LetProd : {s : ℕ} -> Term s -> Term (suc (suc s)) -> Term s
raiseTermℕ : (n : ℕ) -> Term s -> Term (n + s)
raiseTermℕ n (Var x) = Var (raise n x)
raiseTermℕ n (App t1 t2) = App (raiseTermℕ n t1) (raiseTermℕ n t2)
raiseTermℕ n (Abs t) = Abs (raiseTermℕ n t)
raiseTermℕ n unit = unit
raiseTermℕ n (Promote t) = Promote (raiseTermℕ n t)
raiseTermℕ n (Let t1 t2) = Let (raiseTermℕ n t1) (raiseTermℕ n t2)
raiseTermℕ n vtrue = vtrue
raiseTermℕ n vfalse = vfalse
raiseTermℕ n (If t t1 t2) = If (raiseTermℕ n t) (raiseTermℕ n t1) (raiseTermℕ n t2)
raiseTermℕ n (tuple t1 t2) = tuple (raiseTermℕ n t1) (raiseTermℕ n t2)
raiseTermℕ n (LetProd t1 t2) = LetProd (raiseTermℕ n t1) (raiseTermℕ n t2)
raiseTermℕzero : {s : ℕ} {t : Term s} -> raiseTermℕ zero t ≡ t
raiseTermℕzero {.(suc _)} {Var x} = refl
raiseTermℕzero {s} {App t1 t2} rewrite raiseTermℕzero {s} {t1} | raiseTermℕzero {s} {t2} = refl
raiseTermℕzero {s} {Abs t} rewrite raiseTermℕzero {suc s} {t} = refl
raiseTermℕzero {s} {unit} = refl
raiseTermℕzero {s} {Promote t} rewrite raiseTermℕzero {s} {t} = refl
raiseTermℕzero {s} {Let t1 t2} rewrite raiseTermℕzero {s} {t1} | raiseTermℕzero {suc s} {t2} = refl
raiseTermℕzero {s} {vtrue} = refl
raiseTermℕzero {s} {vfalse} = refl
raiseTermℕzero {s} {If t0 t1 t2} rewrite raiseTermℕzero {s} {t0} | raiseTermℕzero {s} {t1} | raiseTermℕzero {s} {t2} = refl
raiseTermℕzero {s} {tuple e1 e2} rewrite raiseTermℕzero {s} {e1} | raiseTermℕzero {s} {e2} = refl
raiseTermℕzero {s} {LetProd e1 e2} rewrite raiseTermℕzero {s} {e1} | raiseTermℕzero {suc (suc s)} {e2} = refl
raiseTerm : {s : ℕ} -> Term s -> Term (suc s)
raiseTerm {s} t = raiseTermℕ {s} 1 t
raiseProp : {n : ℕ} {t : Term s} -> raiseTerm (raiseTermℕ n t) ≡ raiseTermℕ (suc n) t
raiseProp {.(suc _)} {n} {Var x} = refl
raiseProp {s} {n} {App t t₁}
rewrite raiseProp {s} {n} {t} | raiseProp {s} {n} {t₁} = refl
raiseProp {s} {n} {Abs t}
rewrite raiseProp {suc s} {n} {t} = refl
raiseProp {s} {n} {unit} = refl
raiseProp {s} {n} {Promote t}
rewrite raiseProp {s} {n} {t} = refl
raiseProp {s} {n} {Let t t₁}
rewrite raiseProp {s} {n} {t} | raiseProp {suc s} {n} {t₁} = refl
raiseProp {s} {n} {vtrue} = refl
raiseProp {s} {n} {vfalse} = refl
raiseProp {s} {n} {If t t₁ t₂}
rewrite raiseProp {s} {n} {t} | raiseProp {s} {n} {t₁} | raiseProp {s} {n} {t₂} = refl
raiseProp {s} {n} {tuple e1 e2}
rewrite raiseProp {s} {n} {e1} | raiseProp {s} {n} {e2} = refl
raiseProp {s} {n} {LetProd e1 e2}
rewrite raiseProp {s} {n} {e1} | raiseProp {suc (suc s)} {n} {e2} = refl
-- Helper
finRaiseComm : {s n : ℕ} {x : Fin (suc s)} -> Fin.suc (raise n x) ≡ raise n (Fin.suc x)
finRaiseComm {zero} {zero} {Fin.zero} = refl
finRaiseComm {zero} {suc n} {Fin.zero} rewrite finRaiseComm {zero} {n} {Fin.zero} = refl
finRaiseComm {suc s} {zero} {Fin.zero} = refl
finRaiseComm {suc s} {zero} {Fin.suc x} = refl
finRaiseComm {suc s} {suc n} {Fin.zero} rewrite finRaiseComm {suc s} {n} {Fin.zero} = refl
finRaiseComm {suc s} {suc n} {Fin.suc x} rewrite finRaiseComm {suc s} {n} {Fin.suc x} = refl
raisePropCom : {n : ℕ} {t : Term s} -> raiseTermℕ (suc n) t ≡ raiseTermℕ n (raiseTerm t)
raisePropCom {.(suc _)} {zero} {Var x} = refl
raisePropCom {suc s} {suc n} {Var x} rewrite finRaiseComm {s} {n} {x} = refl
raisePropCom {s} {n} {App t1 t2}
rewrite raisePropCom {s} {n} {t1} | raisePropCom {s} {n} {t2} = refl
raisePropCom {s} {n} {Abs t}
rewrite raisePropCom {suc s} {n} {t} = refl
raisePropCom {s} {n} {unit} = refl
raisePropCom {s} {n} {Promote t}
rewrite raisePropCom {s} {n} {t} = refl
raisePropCom {s} {n} {Let t1 t2}
rewrite raisePropCom {s} {n} {t1}
| raisePropCom {suc s} {n} {t2} = refl
raisePropCom {s} {n} {vtrue} = refl
raisePropCom {s} {n} {vfalse} = refl
raisePropCom {s} {n} {If t1 t2 t3}
rewrite raisePropCom {s} {n} {t1}
| raisePropCom {s} {n} {t2}
| raisePropCom {s} {n} {t3} = refl
raisePropCom {s} {n} {tuple e1 e2}
rewrite raisePropCom {s} {n} {e1}
| raisePropCom {s} {n} {e2}
= refl
raisePropCom {s} {n} {LetProd t1 t2}
rewrite raisePropCom {s} {n} {t1}
| raisePropCom {suc (suc s)} {n} {t2}
= refl
-- `mathcVar` is used to enact substitution into a variable term
-- i.e., the situation is that we have a receiver:
-- G2, x : A, G3 |- y : B
-- and a substitutee
-- G1 |- t : A
-- where |G1| = |G2| + |G3|
-- The question is whether
-- (1) y = x and so we do substitution
-- (2) y is in G2 so we do not substitute but instead return pred of y position
-- (3) y is in G3 so we do not substitute but instead return just y
-- `matchVar x y t` computes the above
-- Uses the following helper:
-- `pred!` subtract 1 from an element of a finite set (shrinking its bound)
pred! : Fin (suc (suc s)) -> Fin (suc s)
pred! Fin.zero = Fin.zero
pred! (Fin.suc x) = x
discrimBool : {s : ℕ} -> vtrue {s} ≡ vfalse {s} -> ⊥
discrimBool ()
absInj2 : {s : ℕ} {x y : Fin (suc s)} {e1 e2 : Term (suc s)} -> Abs e1 ≡ Abs e2 -> e1 ≡ e2
absInj2 refl = refl
-- lookupCtx : {{R : Semiring}} -> {s : ℕ} -> (Γ : Context s) -> Fin s -> Assumption
-- lookupCtx (Ext ctx x₁) Fin.zero = x₁
-- lookupCtx (Ext ctx x₁) (Fin.suc x) = lookupCtx ctx x
-------------------------------------------------
-- # Typing
-- raise on the right
raiseR : ∀ {m} n → Fin m → Fin (m + n)
raiseR {m} n i rewrite +-comm m n = raise n i
data _⊢_∶_ {{R : Semiring}} : {s : ℕ} -> Context s -> Term s -> Type -> Set where
-- (x : A) ∈ Γ
----------------------------
-- Γ |- x : A
var : {s1 s2 : ℕ}
{ A : Type }
{ Γ : Context (s1 + 1 + s2) }
{ Γ1 : Context s1 }
{ Γ2 : Context s2 }
(pos : Γ ≡ ((Ext (0R · Γ1) (Grad A 1R)) ,, (0R · Γ2)))
-> ---------------------
Γ ⊢ Var (raiseR s2 (fromℕ s1)) ∶ A
app : {s : ℕ}
{ Γ Γ1 Γ2 : Context s }
{ r : grade }
{ A B : Type}
{ t1 t2 : Term s }
-> Γ1 ⊢ t1 ∶ FunTy A r B
-> Γ2 ⊢ t2 ∶ A
-> { Γ ≡ (Γ1 ++ (r · Γ2))}
-> -----------------------------
Γ ⊢ App t1 t2 ∶ B
abs : {s1 s2 : ℕ}
{ Γ : Context (s1 + 1 + s2) }
{ Γ1 : Context s1 }
{ Γ2 : Context s2 }
{ Γ' : Context (s1 + s2) }
{ r : grade }
{ A B : Type }
{ t : Term (s1 + 1 + s2) }
-> (pos : Γ ≡ (Ext Γ1 (Grad A r)) ,, Γ2) -- TODO: why are we splitting into G1 and G2? aren't we adding the new variable at the end of G?
-> Γ ⊢ t ∶ B
-> { Γ' ≡ (Γ1 ,, Γ2)}
-> --------------------------------------
Γ' ⊢ Abs t ∶ FunTy A r B -- TODO: double-check x
pr : {s : ℕ}
-> { Γ Γ' : Context s }
-> { r : grade }
-> { A : Type }
-> { t : Term s }
-> Γ ⊢ t ∶ A
-> { Γ' ≡ r · Γ }
--------------------------------
-> Γ' ⊢ Promote t ∶ Box r A
unbox : {s : ℕ}
-> { Γ1 Γ2 Γ : Context s }
-> { r : grade }
-> { A B : Type }
-> (t1 : Term s)
-> (t2 : Term (suc s))
-> (Γ1 ⊢ t1 ∶ Box r A)
-> Ext Γ2 (Grad A r) ⊢ t2 ∶ B
-> { Γ ≡ Γ1 ++ Γ2 }
-> --------------------------
Γ ⊢ Let t1 t2 ∶ B
unitConstr : {s : ℕ} { Γ : Context s }
-> --------------------------------
(0R · Γ) ⊢ unit ∶ Unit
trueConstr : {s : ℕ} { Γ : Context s }
-> --------------------------------
(0R · Γ) ⊢ vtrue ∶ BoolTy
falseConstr : {s : ℕ} { Γ : Context s }
-> --------------------------------
(0R · Γ) ⊢ vfalse ∶ BoolTy
if : {s : ℕ}
{ Γ Γ1 Γ2 : Context s }
{ B : Type }
{ t1 t2 t3 : Term s }
{ r : grade }
{ used : r ≤ 1R }
-> Γ1 ⊢ t1 ∶ BoolTy
-> Γ2 ⊢ t2 ∶ B
-> Γ2 ⊢ t3 ∶ B
-> { res : ((r · Γ1) ++ Γ2) ≡ Γ }
----------------------------------
-> Γ ⊢ If t1 t2 t3 ∶ B
prodIntro : {s : ℕ}
{ Γ Γ1 Γ2 : Context s }
{ A B : Type }
{ t1 t2 : Term s }
-> Γ1 ⊢ t1 ∶ A
-> Γ2 ⊢ t2 ∶ B
-> { res : Γ1 ++ Γ2 ≡ Γ }
------------------------------------
-> Γ ⊢ tuple t1 t2 ∶ ProdTy A B
prodElim : {s : ℕ}
{ Γ Γ1 Γ2 : Context s }
{ t1 : Term s }
{ t2 : Term (suc (suc s)) }
{ A B C : Type }
{ r : grade }
-> Γ1 ⊢ t1 ∶ ProdTy A B
-> Ext (Ext Γ2 (Grad A r)) (Grad B r) ⊢ t2 ∶ C
---------------------------------------------
-> { res : ((r · Γ1) ++ Γ2) ≡ Γ }
-> Γ ⊢ LetProd t1 t2 ∶ C
-- Value predicate
data Value : {s : ℕ} -> Term s -> Set where
unitValue : {s : ℕ} -> Value {s} unit
varValue : {s : ℕ} -> Value (Var (fromℕ s))
absValue : {s : ℕ} -> (t : Term (suc s)) -> Value (Abs t)
promoteValue : {s : ℕ} -> (t : Term s) -> Value (Promote t)
trueValue : {s : ℕ} -> Value {s} vtrue
falseValue : {s : ℕ} -> Value {s} vfalse
prodValue : {s : ℕ} -> (t1 t2 : Term s) -> Value {s} t1 -> Value {s} t2 -> Value (tuple t1 t2)
postulate
exchange : {{R : Semiring}}
{s1 s2 : ℕ}
{Γ1 : Context s1} {Γ2 : Context s2} {A B : Type} {r : grade}
{t : Term (suc (s1 + s2))}
-> (Ext Γ1 (Grad A r) ,, Γ2) ⊢ t ∶ B
-> Ext (Γ1 ,, Γ2) (Grad A r) ⊢ t ∶ B