-
Notifications
You must be signed in to change notification settings - Fork 3.5k
/
Copy pathunordered.go
623 lines (542 loc) · 15.6 KB
/
unordered.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
package chunkenc
import (
"bytes"
"context"
"encoding/binary"
"fmt"
"io"
"math"
"time"
"github.com/Workiva/go-datastructures/rangetree"
"github.com/cespare/xxhash/v2"
"github.com/pkg/errors"
"github.com/prometheus/prometheus/model/labels"
"github.com/grafana/loki/pkg/iter"
"github.com/grafana/loki/pkg/logproto"
"github.com/grafana/loki/pkg/logql/log"
"github.com/grafana/loki/pkg/logqlmodel/stats"
)
var noopStreamPipeline = log.NewNoopPipeline().ForStream(labels.Labels{})
type HeadBlock interface {
IsEmpty() bool
CheckpointTo(w io.Writer) error
CheckpointBytes(b []byte) ([]byte, error)
CheckpointSize() int
LoadBytes(b []byte) error
Serialise(pool WriterPool) ([]byte, error)
Reset()
Bounds() (mint, maxt int64)
Entries() int
UncompressedSize() int
Convert(HeadBlockFmt) (HeadBlock, error)
Append(int64, string, labels.Labels) error
Iterator(
ctx context.Context,
direction logproto.Direction,
mint,
maxt int64,
pipeline log.StreamPipeline,
) iter.EntryIterator
SampleIterator(
ctx context.Context,
mint,
maxt int64,
extractor log.StreamSampleExtractor,
) iter.SampleIterator
Format() HeadBlockFmt
}
type unorderedHeadBlock struct {
format HeadBlockFmt
// Opted for range tree over skiplist for space reduction.
// Inserts: O(log(n))
// Scans: (O(k+log(n))) where k=num_scanned_entries & n=total_entries
rt rangetree.RangeTree
lines int // number of entries
size int // size of uncompressed bytes.
mint, maxt int64 // upper and lower bounds
}
func newUnorderedHeadBlock(headBlockFmt HeadBlockFmt) *unorderedHeadBlock {
return &unorderedHeadBlock{
format: headBlockFmt,
rt: rangetree.New(1),
}
}
func (hb *unorderedHeadBlock) Format() HeadBlockFmt { return hb.format }
func (hb *unorderedHeadBlock) IsEmpty() bool {
return hb.size == 0
}
func (hb *unorderedHeadBlock) Bounds() (int64, int64) {
return hb.mint, hb.maxt
}
func (hb *unorderedHeadBlock) Entries() int {
return hb.lines
}
func (hb *unorderedHeadBlock) UncompressedSize() int {
return hb.size
}
func (hb *unorderedHeadBlock) Reset() {
x := newUnorderedHeadBlock(hb.format)
*hb = *x
}
type nsEntry struct {
line string
metadataLabels labels.Labels
}
// collection of entries belonging to the same nanosecond
type nsEntries struct {
ts int64
entries []nsEntry
}
func (e *nsEntries) ValueAtDimension(_ uint64) int64 {
return e.ts
}
func (hb *unorderedHeadBlock) Append(ts int64, line string, metaLabels labels.Labels) error {
if hb.format < UnorderedWithMetadataHeadBlockFmt {
// metaLabels must be ignored for the previous head block formats
metaLabels = nil
}
// This is an allocation hack. The rangetree lib does not
// support the ability to pass a "mutate" function during an insert
// and instead will displace any existing entry at the specified timestamp.
// Since Loki supports multiple lines per timestamp,
// we insert an entry without any log lines,
// which is ordered by timestamp alone.
// Then, we detect if we've displaced any existing entries, and
// append the new one to the existing, preallocated slice.
// If not, we create a slice with one entry.
e := &nsEntries{
ts: ts,
}
displaced := hb.rt.Add(e)
if displaced[0] != nil {
// While we support multiple entries at the same timestamp, we _do_ de-duplicate
// entries at the same time with the same content, iterate through any existing
// entries and ignore the line if we already have an entry with the same content
for _, et := range displaced[0].(*nsEntries).entries {
if et.line == line {
e.entries = displaced[0].(*nsEntries).entries
return nil
}
}
e.entries = append(displaced[0].(*nsEntries).entries, nsEntry{line, metaLabels})
} else {
e.entries = []nsEntry{{line, metaLabels}}
}
// Update hb metdata
if hb.size == 0 || hb.mint > ts {
hb.mint = ts
}
if hb.maxt < ts {
hb.maxt = ts
}
hb.size += len(line) + metaLabelsLen(metaLabels)
hb.lines++
return nil
}
func metaLabelsLen(metaLabels labels.Labels) int {
length := 0
for _, label := range metaLabels {
length += len(label.Name) + len(label.Value)
}
return length
}
// Implements rangetree.Interval
type interval struct {
mint, maxt int64
}
func (i interval) LowAtDimension(_ uint64) int64 { return i.mint }
// rangetree library treats this as inclusive, but we want exclusivity,
// or [from, through) in nanoseconds
func (i interval) HighAtDimension(_ uint64) int64 { return i.maxt - 1 }
// helper for base logic across {Entry,Sample}Iterator
func (hb *unorderedHeadBlock) forEntries(
ctx context.Context,
direction logproto.Direction,
mint,
maxt int64,
entryFn func(int64, string, labels.Labels) error, // returning an error exits early
) (err error) {
if hb.IsEmpty() || (maxt < hb.mint || hb.maxt < mint) {
return
}
entries := hb.rt.Query(interval{
mint: mint,
maxt: maxt,
})
chunkStats := stats.FromContext(ctx)
process := func(es *nsEntries) {
chunkStats.AddHeadChunkLines(int64(len(es.entries)))
// preserve write ordering of entries with the same ts
var i int
if direction == logproto.BACKWARD {
i = len(es.entries) - 1
}
next := func() {
if direction == logproto.FORWARD {
i++
} else {
i--
}
}
for ; i < len(es.entries) && i >= 0; next() {
line := es.entries[i].line
metadataLabels := es.entries[i].metadataLabels
chunkStats.AddHeadChunkBytes(int64(len(line)))
err = entryFn(es.ts, line, metadataLabels)
}
}
if direction == logproto.FORWARD {
for _, e := range entries {
process(e.(*nsEntries))
if err != nil {
return err
}
}
} else {
for i := len(entries) - 1; i >= 0; i-- {
process(entries[i].(*nsEntries))
if err != nil {
return err
}
}
}
return nil
}
func (hb *unorderedHeadBlock) Iterator(
ctx context.Context,
direction logproto.Direction,
mint,
maxt int64,
pipeline log.StreamPipeline,
) iter.EntryIterator {
// We are doing a copy everytime, this is because b.entries could change completely,
// the alternate would be that we allocate a new b.entries everytime we cut a block,
// but the tradeoff is that queries to near-realtime data would be much lower than
// cutting of blocks.
streams := map[string]*logproto.Stream{}
baseHash := pipeline.BaseLabels().Hash()
_ = hb.forEntries(
ctx,
direction,
mint,
maxt,
func(ts int64, line string, nonIndexedLabels labels.Labels) error {
// TODO: This should go to a separate PR
newLine, parsedLbs, matches := pipeline.ProcessString(ts, line)
if !matches {
return nil
}
var stream *logproto.Stream
labels := parsedLbs.String()
var ok bool
if stream, ok = streams[labels]; !ok {
stream = &logproto.Stream{
Labels: labels,
Hash: baseHash,
}
streams[labels] = stream
}
stream.Entries = append(stream.Entries, logproto.Entry{
Timestamp: time.Unix(0, ts),
Line: newLine,
NonIndexedLabels: nonIndexedLabels,
})
return nil
},
)
if len(streams) == 0 {
return iter.NoopIterator
}
streamsResult := make([]logproto.Stream, 0, len(streams))
for _, stream := range streams {
streamsResult = append(streamsResult, *stream)
}
return iter.NewStreamsIterator(streamsResult, direction)
}
// nolint:unused
func (hb *unorderedHeadBlock) SampleIterator(
ctx context.Context,
mint,
maxt int64,
extractor log.StreamSampleExtractor,
) iter.SampleIterator {
series := map[string]*logproto.Series{}
baseHash := extractor.BaseLabels().Hash()
_ = hb.forEntries(
ctx,
logproto.FORWARD,
mint,
maxt,
func(ts int64, line string, metaLabels labels.Labels) error {
value, parsedLabels, ok := extractor.ProcessString(ts, line)
if !ok {
return nil
}
var (
found bool
s *logproto.Series
)
lbs := parsedLabels.String()
s, found = series[lbs]
if !found {
s = &logproto.Series{
Labels: lbs,
Samples: SamplesPool.Get(hb.lines).([]logproto.Sample)[:0],
StreamHash: baseHash,
}
series[lbs] = s
}
s.Samples = append(s.Samples, logproto.Sample{
Timestamp: ts,
Value: value,
Hash: xxhash.Sum64(unsafeGetBytes(line)),
// TODO: add metadata labels to sample
})
return nil
},
)
if len(series) == 0 {
return iter.NoopIterator
}
seriesRes := make([]logproto.Series, 0, len(series))
for _, s := range series {
seriesRes = append(seriesRes, *s)
}
return iter.SampleIteratorWithClose(iter.NewMultiSeriesIterator(seriesRes), func() error {
for _, s := range series {
SamplesPool.Put(s.Samples)
}
return nil
})
}
// nolint:unused
// serialise is used in creating an ordered, compressed block from an unorderedHeadBlock
func (hb *unorderedHeadBlock) Serialise(pool WriterPool) ([]byte, error) {
inBuf := serializeBytesBufferPool.Get().(*bytes.Buffer)
defer func() {
inBuf.Reset()
serializeBytesBufferPool.Put(inBuf)
}()
outBuf := &bytes.Buffer{}
encBuf := make([]byte, binary.MaxVarintLen64)
compressedWriter := pool.GetWriter(outBuf)
defer pool.PutWriter(compressedWriter)
_ = hb.forEntries(
context.Background(),
logproto.FORWARD,
0,
math.MaxInt64,
func(ts int64, line string, metaLabels labels.Labels) error {
n := binary.PutVarint(encBuf, ts)
inBuf.Write(encBuf[:n])
n = binary.PutUvarint(encBuf, uint64(len(line)))
inBuf.Write(encBuf[:n])
inBuf.WriteString(line)
if hb.format >= UnorderedWithMetadataHeadBlockFmt {
// Serialize metadata labels
n = binary.PutUvarint(encBuf, uint64(len(metaLabels)))
inBuf.Write(encBuf[:n])
for _, l := range metaLabels {
n = binary.PutUvarint(encBuf, uint64(len(l.Name)))
inBuf.Write(encBuf[:n])
inBuf.WriteString(l.Name)
n = binary.PutUvarint(encBuf, uint64(len(l.Value)))
inBuf.Write(encBuf[:n])
inBuf.WriteString(l.Value)
}
}
return nil
},
)
if _, err := compressedWriter.Write(inBuf.Bytes()); err != nil {
return nil, errors.Wrap(err, "appending entry")
}
if err := compressedWriter.Close(); err != nil {
return nil, errors.Wrap(err, "flushing pending compress buffer")
}
return outBuf.Bytes(), nil
}
func (hb *unorderedHeadBlock) Convert(version HeadBlockFmt) (HeadBlock, error) {
if hb.format == version {
return hb, nil
}
out := version.NewBlock()
err := hb.forEntries(
context.Background(),
logproto.FORWARD,
0,
math.MaxInt64,
func(ts int64, line string, metaLabels labels.Labels) error {
return out.Append(ts, line, metaLabels)
},
)
return out, err
}
// CheckpointSize returns the estimated size of the headblock checkpoint.
func (hb *unorderedHeadBlock) CheckpointSize() int {
size := 1 // version
size += binary.MaxVarintLen32 * 2 // total entries + total size
size += binary.MaxVarintLen64 * 2 // mint,maxt
size += (binary.MaxVarintLen64 + binary.MaxVarintLen32) * hb.lines // ts + len of log line.
if hb.format >= UnorderedWithMetadataHeadBlockFmt {
_ = hb.forEntries(
context.Background(),
logproto.FORWARD,
0,
math.MaxInt64,
func(ts int64, line string, metaLabels labels.Labels) error {
// len of meta labels
size += binary.MaxVarintLen32
// len of name and value of each meta label, the size of values is already included into hb.size
size += (binary.MaxVarintLen32 * 2) * len(metaLabels)
return nil
},
)
}
size += hb.size // uncompressed bytes of lines
return size
}
// CheckpointBytes serializes a headblock to []byte. This is used by the WAL checkpointing,
// which does not want to mutate a chunk by cutting it (otherwise risking content address changes), but
// needs to serialize/deserialize the data to disk to ensure data durability.
func (hb *unorderedHeadBlock) CheckpointBytes(b []byte) ([]byte, error) {
buf := bytes.NewBuffer(b[:0])
err := hb.CheckpointTo(buf)
return buf.Bytes(), err
}
// CheckpointTo serializes a headblock to a `io.Writer`. see `CheckpointBytes`.
func (hb *unorderedHeadBlock) CheckpointTo(w io.Writer) error {
eb := EncodeBufferPool.Get().(*encbuf)
defer EncodeBufferPool.Put(eb)
eb.reset()
eb.putByte(byte(hb.Format()))
_, err := w.Write(eb.get())
if err != nil {
return errors.Wrap(err, "write headBlock version")
}
eb.reset()
eb.putUvarint(hb.lines)
_, err = w.Write(eb.get())
if err != nil {
return errors.Wrap(err, "write headBlock metas")
}
eb.reset()
err = hb.forEntries(
context.Background(),
logproto.FORWARD,
0,
math.MaxInt64,
func(ts int64, line string, metaLabels labels.Labels) error {
eb.putVarint64(ts)
eb.putUvarint(len(line))
_, err = w.Write(eb.get())
if err != nil {
return errors.Wrap(err, "write headBlock entry ts")
}
eb.reset()
_, err := io.WriteString(w, line)
if err != nil {
return errors.Wrap(err, "write headblock entry line")
}
if hb.format >= UnorderedWithMetadataHeadBlockFmt {
// metadata
eb.putUvarint(len(metaLabels))
_, err = w.Write(eb.get())
if err != nil {
return errors.Wrap(err, "write headBlock entry meta labels length")
}
eb.reset()
for _, l := range metaLabels {
eb.putUvarint(len(l.Name))
eb.putUvarint(len(l.Value))
_, err = w.Write(eb.get())
if err != nil {
return errors.Wrap(err, "write headBlock entry meta label name and value length")
}
eb.reset()
_, err = io.WriteString(w, l.Name)
if err != nil {
return errors.Wrap(err, "write headBlock entry meta label name")
}
_, err = io.WriteString(w, l.Value)
if err != nil {
return errors.Wrap(err, "write headBlock entry meta label value")
}
}
}
return nil
},
)
return nil
}
func (hb *unorderedHeadBlock) LoadBytes(b []byte) error {
// ensure it's empty
*hb = *newUnorderedHeadBlock(hb.format)
if len(b) < 1 {
return nil
}
db := decbuf{b: b}
version := db.byte()
if db.err() != nil {
return errors.Wrap(db.err(), "verifying headblock header")
}
if version < UnorderedHeadBlockFmt.Byte() {
return errors.Errorf("incompatible headBlock version (%v), only V4 and the next versions are currently supported", version)
}
n := db.uvarint()
if err := db.err(); err != nil {
return errors.Wrap(err, "verifying headblock metadata")
}
for i := 0; i < n && db.err() == nil; i++ {
ts := db.varint64()
lineLn := db.uvarint()
line := string(db.bytes(lineLn))
var metaLabels labels.Labels
if version >= UnorderedWithMetadataHeadBlockFmt.Byte() {
metaLn := db.uvarint()
if metaLn > 0 {
metaLabels = make(labels.Labels, metaLn)
for j := 0; j < metaLn && db.err() == nil; j++ {
nameLn := db.uvarint()
valueLn := db.uvarint()
metaLabels[j] = labels.Label{
Name: string(db.bytes(nameLn)),
Value: string(db.bytes(valueLn)),
}
}
}
}
if err := hb.Append(ts, line, metaLabels); err != nil {
return err
}
}
if err := db.err(); err != nil {
return errors.Wrap(err, "decoding entries")
}
return nil
}
// HeadFromCheckpoint handles reading any head block format and returning the desired form.
// This is particularly helpful replaying WALs from different configurations
// such as after enabling unordered writes.
func HeadFromCheckpoint(b []byte, desired HeadBlockFmt) (HeadBlock, error) {
if len(b) == 0 {
return desired.NewBlock(), nil
}
db := decbuf{b: b}
version := db.byte()
if db.err() != nil {
return nil, errors.Wrap(db.err(), "verifying headblock header")
}
format := HeadBlockFmt(version)
if format > UnorderedWithMetadataHeadBlockFmt {
return nil, fmt.Errorf("unexpected head block version: %v", format)
}
decodedBlock := format.NewBlock()
if err := decodedBlock.LoadBytes(b); err != nil {
return nil, err
}
if decodedBlock.Format() != desired {
return decodedBlock.Convert(desired)
}
return decodedBlock, nil
}